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By using the conditions for the existence of the critical points in anisotropic ferro-
magnets with a field, derived in'[l], some concrete ferromagnets are considered. The direc-
tions for the uniaxial, orthorhombic, cubic and tetragonal ferromagnets in which the directed
external field does not destroy the continuous phase transitions (described either by XY-like
or Ising-like critical exponents) are found. In some cases for the definite values of the magnetic
field, depending on the interaction -parameters, the multicritical points may appear.

1. Introduction

The Hamiltonian of an anisotropic ferromagnet with an external uniform magnetic
field may be written in the form:

H = —7.‘ Z(' +q j ." .[ Z”u Oy q1 qza—q q1— qz+(h o), €))

q q1 g2 I,J
where o, is a classxcal three-component spin vector of wave vector ¢, k is the external
magnetic field and +° = a,(T— 0)) (@, the respective critical temperature of ¢' in the free
field case).

The Hamiltonian (1) has a stable fixed point if the relations between the interaction
parameters ry, uf; and the external field, which were derived in [1] are satisfied. In the
present paper we will check these relations for some anisotropic ferromagnets described
by the Hamiltonian (I) with definite symmetry (with some additional conditions for the
interaction parameters). In other words, we will find the directions in the anisotropic
ferromagnets given the symmetry in which the directed external magnetic field does not
destroy the continuous phase transition.

The influence of the external field on the phase transitions in the anisotropic ferro-
magnets has been studied for many years (see Refs. 1-13 to [1]). It was shown that in
uniaxial [2], orthorhombic [3] and tetragonal [4] (with casy axis) ferromagnets, the contin-
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uous phase transition still exists if the field is directed in the plane perpendicular to the
easy axis. In the cubic four-axial ferromagnet [5] the external field directed in any direction
in the plane {100} docs not destroy such a phase transition, whereas in the cubic three-
-axial ferromagnet [6] the field ought to be directed in the part of the plane formed by
a diagonal of a face of the cube and a main diagonal but not along the latter diagonal
and not in some finite region in its vicinity.

In this paper we will find: the ordinary critical points of the anisotropic ferromagnets
mentioned above in the presence of an external field ot arbitrary direction, multicritical
points and some conditions for the existence of the critical points in the general case (unde-
fined symmetry).

After the following two transformations

0y = 04+ M;5(q), | @
where M, is given by the relation ‘
h; = My(r? +4zu M3, M;—»0 for k>0, (3)
and ‘
0y = Og = X 1Sy @
J
where ¢;; are the elements of fhe matrix T
Cos @ sin 0 cos 0 sin @ sin 0
T =|—cosysing €Oos 1 cos @ cos §—sin O sin ¢ €os o cos ¢ sin §+cos 6 sin p
sin psin ¢  —sin g cos pcos §—cos psin @ —sin y cos ¢ sin O+cos G cos v

- (the angles ¢ and @ define the direction of the vector M) the Hamiltonian (1) takes the
form (see [1])

=~

5 _%j (r”—i—qzéu)S S j j WuSqS{nSJ—q a1 ij jS SZ Siq a1
q q q1

i,Jj i,J q 41

I j ulJSqS:hSile{‘q q1—4q2 4." j .[ ZUUS‘IS{MS{IZSJ—Q ar—qz
q

q1 q2 i,J q q1 qz i#]
R k
=T 50 Y muSeSeSiSty-gi-an (6)
q q1 g2 iFj#Fk

The new interaction parameters after the transformations (2) and (3) were given in [1].
According to paper [1] ‘the conditions for the existence of the XY-like critical
point (solution of the C, class) have the form

I P33 = Fap < ¥y,
(1) . . -
I ry’=0, for i#j],

III Wij B3 0, l,j =S 2, 3,
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IV o;—ww;f2r;; =0 for i#j (i,j=23),
Vo 0 <uy; — (2w —wyaw3)[2r < A @)
(A some function of @i; = uy;—wii/2ryy).
Whereas for the Ising-like critical point (solution of the C, class)
(1) (1)

I I3z < Tyi, 723,

O rp=0 for i#j

III W33 = 0,
2

/ IV ug— Y [wiT2r > 0, (8)
i=1

where 7{}’ and w{}’ are the interaction parameters after the additional rotation [¢{}(«)]
which diagonalize the Hamiltonian (6) in the plane (1.2).

In the following sections we will consider the X¥-like and the Ising-like critical points
of the anisotropic ferromagnets in the external field directed: along [100], in any direction
in the plane {100}, outside the plane {100}. It is easy to see from (3) that the vector M is
directed in these directions as well, although except for the first case the vector M is not
parallel to the vector A.

The complete analysis will be presented only for the case when

ud =u4+0° and u; =u® for i#j, )

but it is easy to see that for all the ferromagnets mentioned above the relations (9) are
satisfied. However, by using the same general formalism we could find the critical points
in any case (it means for a ferromagnet of an arbitrary given symmetry). In the cases of
the systems for which (9) is not fulfilled we will restrict ourselfs to some general remarks.

2. XY-like critical points

In this section we will check conditions (7) for various directions of the external
field.

A. The external field along one of the directions (100>

As mentioned above in this case the vector M is parallel to k. Without loss of generality
we can assume that

M;=M,=0 1ie cosf =cosg¢ =0, . (10)
and the value of M is given by the relation

h = M(r3+4u3sM>). N ¢8))
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a) Condition (7.11). It is easy to see that if the relations (10)-are satisfied the condition
(7.11) may be written in the form

r23 = sin g cos [r3—r] +4M*(ud; —ud)] = 0, (12)

(the remaining equalities of (7.I) become identities) thus, the condition (7.10) resolves
itself into

ro—ri+4M*(ug;—ufs) = 0, (13)

or
p=1kr, k=0,1,2,.... 14

b) Condition (7.11I). In the case under consideration the equalities (7.I11) are always
fulfilled.

¢) Condition (7.1). For M, = M, = 0 the effective temperature variables have
the form

0
11T 73+12M2u23, U

rs cos® p+75 sin® p+4M*(ul; cos® y+ud, sin? y),

T2
733 = 19 sin® p+r3 cos? p+4M*(ul, sin? y+uly cos? y). 15)

Thus, the first part of the condition (7.1) i.e., r,, = rs3, yield
(cos® p—sin® y) [r§—r) +4M>(ul; —us)] = 0. (16)

It is easy to see, comparing (16) with (13) and (14) that only (16) and (13) can be fulfilled
simultaneously. It means that in our further considerations we can omit the possibility (14).
The condition (13) is satisfied for an arbitrary value of M if

=7y and u% =ul,. a7n
The above relations resolve equation (16) into

rya = r33 = 13 +4Mul; (18)
If the relations (17) are not satisfied the condition (13) is real only for M = M*, where

(M*)? = r?—rg (19)
4( Uzs "(1)3).
The second part of the condition (7.I), i.e., the inequality r,, < ry;, when related
to (13), leads to

19— +AM*(3ud;—ul;) > 0. (20)

Before checking the remaining conditions (7.IV) and (7.V) one can note that in order
to exist the XY-like critical point, the inequality (20) and one of the conditions (17) or (19)
must be satisfied.
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d) Condition (7.IV). Tt is not hard to show that
U3, D33 ~ sin y cos p. (21)
In the particular case of the symmetry given by the relations (9)

Va3 = D3 = sin y cos p(cos® p—sin® p)o°. (22)
Thus, the condition (7.1V) is always fulfilled for y = & g It is clear that the other possibili-

ties exist as well, and so for the symmetry (9) if p = (2k+1) 5 or for arbitrary ¢ if v° =0

the condition (7.1V) is fulfilled too.
¢) Condition (7.V). Consider the left-hand side of the inequality (7.V), which in our
case (for p = kg) takes the form
8M*uf u; :
0 13%23
= > 0. 23
R FETT VR R (23)

Upon inserting (17) into (23) we obtain
§o, - SMuy)
Y =AM Gus —uly)

24

When the conditions (9) are satisfied the inequality (24) reduces itself to the form
rI—rl4+12M%° > 0. (25)

For v° = 0 this inequality is satisfied only if 3 > r? (i.e. in the uniaxial case the external
field must be parallel to the hard axis). On the other hand if r§ = r2 = r9 inequality (25) is
satisfied only for v® > 0 (cubic four-axial ferromagnet).

The remaining possibilities of the fulfilment of the condition (7.V), for v # k 3

lead to the same results as in the case considered above. Similarly, the right part of the
inequality (7.V) does not lead to any new conclusions.

- Let us now discuss the case when M = M* (19) (i.e. r§ # r3 and 4S5 # u,). In this
instance, there is the interesting possibility for the existence of the XY-like critical point
for the concrete value of the field # = h* given by the formulas (11) and (9), if the condi-
tions (19), (20) and (23) are fulfilled simultaneously. It is easy to see that for & # h* the
condition r33 = r,, is not fulfilled and at the point 4 = A* the expression (r3z—7r22)
changes sign. Thus, in this case bicritical behaviour can occur.

In summary of this part we find that if the external magnetic fields is directed along
the [100] direction:
I. For the symmetry given by relations (9)
I.1 the XY-like critical point exists in the following ferromagnets:
1.1.1 uniaxial if the field is directed perpendicular to.the casy plane,
1.1.2 cubic (r] = ry = r3) in the four-axial case (° > 0),
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1.1.3 tetragonal (r} >r9 = ry, v® > 0) if the field is directed along the hard axis (*i”),
1.1.4 tetragonal (r{ < r] = ry, v° > 0) in the field along the “i”” axis for & > h*, where
h* is given by the formula (11) and (M*)* = (r?——r?)/12v°,‘
1.1.5 tetragonal (! > r9 = rg, v° < 0) in the field directed along the > axis for & < A*:
1.2 there is no XY-like critical point in:
1.2.1 isotropic ferromagnets,
1.2.2 orthorhombic ferromagnets (r$ # ry # r3),
1.2.3 cubic three-axial ferromagnets (v° < 0).

It is easy to see that there is no bicritical point if the relations (9) are fulfilled.
2. For arbitrary symmetry, there is the XY-like critical point only if both axes perpendicular
to the field direction (‘7" direction) are equivalent (r} = rg, uf; = ;). In the other cases
the solution of the C, class can exist only for a given value of M which corresponds to
the bicritical behavior.
B. External field paraliel to the one of the planes {100}

The analysis of the conditions (7), in this case, is much the same as that carried out

above. The following results are obtained.
1. For the symmetry_ given by the relations (9) there is the XY-like critical point if

el e T 0° < - =<0, ‘ (26)

for h parallel to the diagonal of the face (j, k) at the point

0 .011/2 0,.0 °
[0 2u” +v

) —7S
ho= o= | r 0 (r?—r?)]; 27

UO

2. There is no possibility of checking conditions (7) in the general case but it is easy
to see that the C, points can exist for certain relations between the interaction parameters
and the components of the external field. It is clear that the complete analysis can be
carried out for any given symmetry of the Hamiltonian.

C. External field non-parallel to the planes {100}

~ Examination of the conditions (7) demands that calculations similar to those in
part A be performed. It is not hard to show that in this case there are no solutions of the
C, class for the uniaxial, orthorhombic, cubic and tetragonal symmetry. For the other
symmetries the X¥-like critical point can exist for a certain relation between the interaction
parameters and the components of the external field.

3. Ising-like critical points

Similarly, as in the previous section we will check the conditions (8) for the existence
of the Ising-like critical point. First of all, one can note that the conditions r{y = r{¥ = 0
may be written in the form

A sin y cos p+B(cos” p—sin® y) = 0, (28)
Csinp+Dcosy =0, 29
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and the condition w;; = 0 amounts to
a cos® p+b cos® y sin p+c cos p sin® p+dsin’® y = 0, (30)

where 4, B, C, D, a, b, c, d as functions of the interaction parameters, external field (through
M) and angles ¢ and 0 are given in the Appendix.
A. External field along one of the (100> directions.

Without loss of generality we can consider the conditions for the existence of the C,
solutions for the field directed, say, along the [001] direction.. In this case the coefficients
in (28) nad (30), when related to (10) and (11) take the form:

A =ry—rl+4M*u93—-ul3), B=C=D=a=b=c=d =0. (31)

a) Condition (8.II). It is easy to see that this condition resolves itself to the equalities

sin  cos. yp[ry —r) -'F4M2(ug3 ~ud)] =0, (32)
and
Fsinacosa =0, (33)
where
F = r3—r) cos® p—rJ sin® p+4M>*(3ui; —ul; cos® p—ul, sin ). (34)

The first equation.is fulfilled if

p = knj2, | (35)
or
rg—r(1)+4M2(u(2)3—-u$3) =0, (36)
whereas the second omne if
o = kn/2, (37)
or
" F=0. (38)

b) Condition (8.II1). In the case under consideration this condition is always fulfilled.

Thus, considering the remaining conditions (8.I) and (8.IV) we ought to take into
account the four following possibilities of the fulfilment of the condition (8.1I): (i) (35)
and (37), (i) (35) and (38), (i) (36) and (37), (iv) (36) and (38).

¢) Condition (8.1). Let us check this condition in the four cases mentioned above.
(i) After setting (35) and (37) into (8.1) we obtain '

ri+aM*ul, < S+ 12M*uls,
Y+ AMPuly < r9+4Muls, (39)

for odd k and the analogous system of the inequalities with interchanged indices 1 <> 2
“for even k.
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(i) In this case (38) takes the form
I+ 12M%ul; = r+4M%u3, (40)

for odd k (1 & 2 for even k). Comparing (40) to (39) one can note that in this case both
inequalities (39) are equivalent.

It is easy to sec that the two remaining possibilities (#77) and (i) are inconsistent with
the inequalities (8.I). Thus, we conclude that in order to take into account all cases for
which the conditions (8.I)~(8.ILI) are fulfilled one only needs to consider the conditions
(35), (37) and (39).

For the symmetry given by (9) the condition (39) reduces itself into

rd—rd+4M2u°+30°) > 0, 1) <71y, (412)
for odd k, and into
ry—r3+4M2Qu°+3% > 0, 1§ > r (41b)

for even k. In the first case (odd k) ¢! is the critical variable whereas in the second case
(even k) o>.
d) Condition (8.1V). If y = kn/2 and « = mn/2 the condition (8.1V) reduces itself to
SM2(uy)*
0 i3
uii'_‘ 5 > 0, 42
0 1M, (42)
where i = 1, 2 for odd and even k, respectively. It is clear that without loss of generality
we can consider only one of these cases, say odd k.
Since in the vicinity of the critical point r§; &~ 0 the condition (42) may be written
in the form
8M 2(“(1)3)2
9+ 70 +4AM*(3u3; —uls)

0
U1 —

>0, 43)

and for the symmetry given by (9)
8M>(u®)?

. e >
r—rd+4MP(2u’ +30°%)

U4’ — (44)
We now consider some special cases:
(@) v° = 0, as an immediate consequence of (41) and (44) we have, in this case (for u® > 0)

0 0
r% < rg, ry < rs3, (452)

or

<y, 1< . (45b)

This corresponds to the cases: uniaxial in the field perpendicular to the easy axis and
orthorhombic in the field directed along one of the non-easy axes.



291

(i) v} = r3 = r§, v° # 0, cubic ferromagnet. It is easy to see that the second inequality
of (41) is not fulfilled in this case. This means that there is no solution of the C; class in
a cubic ferromagnet in the field along an edge of a cube. In the previous section the solution
of the C, class was found for such symmetry if »° > 0 (four-axial ferromagnet) whereas
for v° < 0 \three -axial) thers is mo critical point.

@it) »? = rJ # rg, v° # 0, tetragonal ferromagnet. There are two solutions for such
symmetry; (41a) and (41b). As was mentioned above we can choose one of them, say,
(41a) i.e.,

<.
There are still two possibilities of realizing the tetragonal symmetry. First if
s =1 <y 2u®+3° >0, (46)
and then from (44) we obtain

2(u0)2
2u®+30°

U0 > 0. (47)

Thus, the second of the inequalities (46) resolves itseif into
vO(Sud+31J°) > 0. (48)

Since u® >0, we get from (46) that (5u°+3v°) > 0, which gives on the basis (48) that
v° >0. (49)

In the second case if
=7 >

one can note that (41) and (44) are fulfilled for v° >0 or v° < 0 and M < M,, where
_ (5= @ +2%)

©T 410 (5ul+30°) (0)

Concluding, for the tetragonal symmetry the solution of the C, class exists if
1) =71} <), v°>0; o, is a critical variable,
or if
21} <r)=r for v°>0o0r v° <0and M < M..
It is easy to see that there is no C, solution if r = r{, thus, on the basis of the previous
section we come to the conclusion that for r§ = r{ the tricritical point can occur at s = h..
Similarly as above, one can check the conditions (8) for the field of an arbitrary direc-
tion. Because the ‘complete analysis of this case demands rather comgplicated but obvious

calculations, we do not show them here. However, in the last section we will present all
main results for any direction of the field.
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4. Conclusions

By using the conditions derived in our previous paper [1], for the existence of the
critical points in the anisotropic ferromagnets of an arbitrary symmetry in the external
magnetic field, some concrete cases were considered. Since the maximum number of the
critical variables, in the case under consideration (threz component vector model with
field) is two, we took into account only the XY¥-like and Ising-like critical behavior. For
convenience, we considered these two types of critical behavior separately.

Carrying out the systematic analysis of the uniaxial, orthorhombic, cubic and teirago-
nal ferromagnets in the field of the arbitrary direction besides previously known, some
new results were obtained. Furthermore some general conclusions for ferromagnets of

ir oo

Fig. 1. The directions in which the directed external magnetic field does not destroy the continuous phase
transition in the uniaxial and orthorhombic ferromagnets with easy axis along [001]. Bold curve represents
critical lines of Ising character

tooti

critical line of Ising character

Fig. 2. The ferromagnet with eady plane (001). If the field is directed along a hard direction [001] the critical
point should be of XY character, whereas, if the field is directed in the other directions — Ising character.
There is no critical point for the field parallel to the easy plane
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arbitrary symmetry was formulated. The directions in which the directed external magnetic
field allows the critical points to occur in the uniaxial, orthorhcmbic and cubic (four- and
three-axial ferromagnets) are shown in Figs. 1-4.

Fig. 3. The cubic four-axial ferromagnef. If the field is along the axis [100] the critical point should be
of XY character in the other cases of Ising character

T too1 —ﬂ;f’

fo10]

Fig. 4. The cubic three-axial ferromagnet. All critical points should be of Ising character. The change
from the continuous to first order phase’ transition occurs for the field directed along the OT direction
(tricritical point) [6]

The detailed results of this paper are presented below.
A. The external magnetic field is along one of the directions <(100>.
I. The XY-like critical points exist; -
L.1. in the systems described by the Hamiltonian which is invariant in respect to inter-
change of the critical variables ¢’ «» g7, :
1.2. if (1.1) is not fulfilled the XY-like critical point can exist only for a certain value of the
field, depending on the interaction parameters,

1.3. the discussion carried out for some concrete ferromagnets confirms the results known
before that the XY-like critical points can occur in
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(i) uniaxial ferromagnet in the field perpendicular to the easy plane [2, 7],

(ii) cubic, four-axial ferromagnet (v° > 0), [5],

(iii) tetragonal ferromagnet in the field along the hard axis (e.g., if v° > 0, 19 > ) = r3
the field must be directed along [100] direction).

1.4. besides it was shown that:

(1) X7Y-like critical points can also occur in the tetragonal ferromagnets for v° > 0, rd <
= if M > M, or v° <0, r} > =r3 if M < M, where

= [} —r3l/120°%,

(if) there aré¢ no XY-like critical points in the orthorhombic ferromagnets,

(m) there are no bi- and tetracritical points for the systems described by the interaction
‘parameters which fulfilled the following relations uj; = u®+0° and wuj; = u® for i # j,
in the field under consideration (& || [100]).

2. The Ising-like critical points

2.1. According to the previous papers such points occur in:

(i) uniaxial ferromagnet when the field is perpendicular to the easy axis [2],

(if) orthorhombic ferromagnet in the field perpendicular to the easy axis [3].

2.2. Moreover, it was shown that the Ising-like critical points can occur in the tetragonal
ferromagnet if

@ v° >0, r1—12<rgorr(1):r3<r2,

or

() ° >0, 13 <=3 or ) <l =13,

or

(i) 1° < 0, rd =rd > ry or 1) =1y > ry for M < M,,

where

(u +v°)(r —r)) 3
*T A G +5u%) A

for the field directed along the [100] direction in all cases ((i)-(iii)).

2.3. Comparing the results which were presented in the points 2.2 and 1.4 we can conclude
that the classical tricritical points can occur in the tetragonal ferromagnets, for the field
directed, say, along the [100] direction if

(i) ° >0, r1 <7 =+ and M = (r3—rd)/12,°

or

i) v° <0, 0> rd = ¢ and M = (+3—r)/12¢°
~or

(r]—r3) (u® +2°)

(i) ° <0, PP =ri>rand M= —_ = 4
) R 4v°(30° +5u°)
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3. According to the previous papers we obtained that there are no continuous phase transi-
tions in the uniaxial ferromaéne‘t in the field parallel to the easy axis and in the cubic
three-axial ferromagnet when the field is along one of the edges of the cube.

B. External magnetic field parallel to the plane {100} apart from axes {100}.

1. Tt was shown that the X¥-like critical points for the symmetry given by the relations (9)

occur only if
0

rS < rd =1, v0<—z<0,

for the field directed along the direction {011), at the point M = M*, where
=75
6100

0 =

It is clear that this point corresponds to the bicritical behavior.

2. The Ising-like critical points. :

2.1. According to the previous papers such points can occur in:
.(?) uniaxial [2] and orthorhombic [3] ferromagnets when the field is directed in any direction
in the plane perpendicular to the easy axis,

(i) cubic, four-axial ferromagnet (v° > 0) in the field parallel to any direction in the plane
{100}, [5], .

(iif) cubic, threc-axial ferromagnet (v° < 0) in the field paraliel to the diagonal of the
face (100> directions) [5].

2.2; Moreover it was shown that

(?) the Ising-like critical points exist in the uniaxial ferromagnets with easy plane if the
field is directed in any direction neither parallel nor perpendicular to this plane,

(if) for the tetragonal ferromagnets in the field parallel to the diagonal of the face (e.g.,
k|| [011]) if r§ < rQ = 5 and v° < 0 two distinct solutions corresponding to two distinct
critical directions exist. One of them is stable for M < M* whereas the other for M > M*,
where
ri—r3
6/0°
In that case there is the bicritical point (XY-like) at M = M*.

C. External field non-parallel to any of the planes {100}.

1. It was shown that there are no XY-like critical points in the uniaxial, orthorhombic,

cubic and tetragonal ferromagnets.

2. The Ising-like critical points.

2.1. There are such points in the uniaxial ferromagnets with easy plane when the field-

is directed in any direction neither parallel nor perpendicular to the easy plane.

2.2. There are no critical points In cubic, four-axial ferromagnets (v° > 0) when the field
- is directed in any direction non-parallel to the {100} planes.

2.3. According to the papers [6], in the cubic three-axial ferromagnets (v° < 0) the Ising-

-like critical point can occur only if the field is directed along some directions parallel to

(y? =
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the plane {110} type (see Fig. 4). There is no continuous phase transitions in such a system
if the field is directed along the [111] direction and in some of its vicinities.

Concluding, by using the general formalism all critical points which can occur in the
uniaxial, orthorhombic, cubic and tetragonal ferromagnets were found. By systematizing
the results known previously this formalism allows us to find some new ones, likewise
draw some conclusions for the general case. It is clear that a similar analysis as was pre-
sented for the mentioned above ferromagnets can be carried out for any symmetry although
sometimes it needs some eﬂ'ort‘and, most of all patience.

APPENDIX
The coefficients of equations (28) and (30).

A = =7, sin? g+ 7F,,(sin® 8~cos? 0 cos® @) +F33(cos” 0—sin®  cos® @)
+2F,, cos B cos @ sin ¢p+275 sin 0 cos @ sin @ — 27,3 cos 0 sin B(1+cos” @);
B = —Fy, €Os 0 sin 0 cos ¢+ 733 cos 0 sin 0 cos @+7y, sin g sin @
—Fy3 €Os 0 sin @+ 7,3 cos g(cos® 0—sin® 0);
C = Fy, COs @ sin ¢p—7,, cos* 0 cos @ sin ¢~ 753 sin” O cos @ sin ¢
+74, cos O(sin? p—cos® ¢)+7 3 sin 6(sin? @ —cos? @) — 27,3 cos 0 sin 0 cos ¢ sin @;
D = —7,, cos 0 sin 0 sin ¢+ 743 cos 0 sin 0 sin ¢—ry, cos @ sin §
+7F,3 COS 0 COS @+ 745 sin g(cos® 0 —sin® 0);
a = M sin ¢ cos 0 sin 0(u3; sin® 6+u3; cos® O+uj3);
b = M cos ¢ sin g{u?, sin® 0+ud; cos® 0—3(u3,+ujs) cos’ 0 sin® 0
+u24(6 cos® 6 sin? 0—1)};
¢ = M cos 0 sin 6 sin {u®,(3 cos> p—1)—uls(3 cos? p—1)—3u3, cos® 6 cos® ¢
+3ul, sin? 0 cos? g+ 3u3, cos? g(cos” 6 —sin® 0)};
d = M cos @ sin @{ul; sin? p—u3, cos* 0 cos* p—u3, sin* f cos® ¢

+u?, cos® O(cos’ @—sin2 )+ul; sin (cos? g~ sin? ¢) —2u; cos® 6 sin” 6 cos” ¢}.
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