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CALCULATIONS OF FIELD DESORPTION AND FIELD
IONIZATION
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The single-cesium-atom adsorption and field ionization process of H and He atoms
in the presence of external positive electric field is considered. The energy shift, the width
of the broaden atomic energy level and effective charge on adatom are self-consistently cal-
culated as a function of external electric field. The influence of an external electric field on
the shift and broadening of energy level of hydrogen and helium atoms and the indirect
influence of these characteristics on critical distance of field ionization is also considered.

1. Introduction

In many cases adsorption is investigated experimentally in the presence of an external
electric field of the strength, F, [1]. On the other hand, the electric field plays a great role
in the field ion microscope, where positive ions of the image gas are produced [2]. The
theory of adsorption in the presence of an external electric field was given by Bennett and
Falicov [3], and some theoretical considerations connected with this problem were given
recently [1]. The theory of field ionization in the field ion microscopy regime was discussed
previously [4]. However, the papers quoted above neglected the spatial contribution to
the shift of energy levels of atomic electrons and do not discuss the dependence of the
desorption energy or field ionization process on the energy shift and broadening of the
atomic electron.

In this paper we shall consider both the desorption and field ionization processes.
In the first case we shall consider single-cesium-atom adsorption. In the case of field ioniza-
tion process we shall consider the influence of an external electric field on the shift and
broadening of the energy level of hydrogen and helium atoms and the indirect influence
of these characteristics on the critical distance of field ionization.

* Address: Instytut Fizyki Dos$wiadczalnej, Uniwersytet Wroclawski, Cybulskiego 36, 50-205 Wro-
claw, Poland.
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2. Description of the system

In order to calculate the Hamiltonian of a bond electron of adatom we use, for simplic-
ity, the classical image energy potential. This energy may be written in the form

V() = &;e; [gD™'—e(dd+1) '], 4=0, 1)
0

where &, is the dielectric constant of the vacuum, and g denotes the effective charge of
adatom (adion) g = Z e (e is the electron charge). The distances, D and d, are defined
in Fig. 1a, and A is a quantity which appears in the potential where quantum corrections
to the image potential are included.
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Fig. 1. Spatial (a) and energetic (b) representation of the adatom (adion) near the metal surface in the
external electric field F

The Hamiltonian of the bound electron in the presence of an external electric field
F, can be written in the form [5]
Hy = Ha+H;-m5 2
where
eq

Hi=—— V'~ —— (2a)
2m Aregr
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is the- Hamiltonian of an atomic electron, and.
Hip=-o (L= 2) 4erd] (2b)
M dmgg\ D 4d

represents the perturbation caused by the metallic surface and external electric field. On
the other hand, a quasi-free electron in metal is perturbed by the presence of the ion core
and the external electric field

Hef = Hm+Ht,'n-a’ (3)
where
h? e (g e
oo agay & (4 €} 3
i om |t 4me, (D 4d) (32)
How=— —2_ LoFd, dzxs, (3b)
dneyr .

The distance, 54, corresponds to the distance at which the potential, V(¢), is equal
to the constant potential, ¥, of the electrons within the metal. Thus s, is the root of the
equation

Vo(so)_ = EF+ P, 4)

where V() is defined by (1), Ej is the Fermi energy and ¢ is the work function of metal.
The atomic electron is described by exact the wave function 9, = |4) for the hydrogen
atom

H a53/ze E, (5)

ya = 2
where a, is the Bohr radius, and by the following function for cesium atom [5]

32 .

(l=are™, a=099 A", (6)

yy = ﬁ
The solution of Schrédinger’s equation with the Hamiltonian, H,, can be written

as [5] '
pe = Cexp [i(k;x+kyp)] exp (ik;¢). (M

In (7), the constant, C, is calculated from the condition y (¢ = 0) = v, where the eigen-
function of an electron in metal is given by [5]

v = (1/k,L7%) exp [i(kyx+k39)] [(ks+ks) exp (iK5E) + (ks —ks) exp (—iky)].  (8)

L is the length of a sufficiently large cubic metal; k and k' are wavenumbers of the electron
according to the origin of the energy scale (Fig. 1b). The indices 1-3 indicate the projections
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on the directions of Ox, Oy and Oz; k and k; are positive imaginary numbers; and k,, is
defined by

h2k? Bt 8
om R ©)
Finally,

wu = (k%)™ exp [k x +k,») 12K, exp (iksé). (10)

3. Energy level shift

- Ttis well known [5, 6], that when an atom interacts with a metal surface the perturba-
tion, H, _,,, caused by the metallic surface, shifts the atomic level with respect to the Fermi
level of metal. The first order shift in the absence of an external electric field is given by

(A2 (L-2)|a)
411:80(1) adj |/

AEy =iy = *— : 11
o =4 A (11)
In the presence of a positive external field, F, the energy shift is equal to
CAHL A Ald|A
AE(F) = A(F) = SAHenl > p A4 (12)
<Al4> <Al4)

Because the distance of an electron from the metal surface is given by d = s+rcos §
= s+2z, and the distance between the electron and the ion core image is given by D~ 2s
+rcosd = 2s+z (a good approximation for r is small compared to s), we may write
ol e |
A = A

e> < 25+z  4(s+z) > _ (Ajzl4)
AF) = — — . +eFs+eF ———.

4meg A4y - <A|4>

(13)

In (13), the integration has been restricted to the region outside th_e mgtal.
The integrals of a type

‘oo o o]

1
— J J J e "dxdydz = K, (a),
2w

—(s—sb) — —o0

and

= I,(m, a),
z+m (’)
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where n = —1,0,1,2,3, ..., Raa, m >0, s—s, > 0, are computed in [7], and are given
in Appendix 1. Finally, the first order energy level shift is expressed by
e® Zelo(2s, 2a)—I(s, 2a)/4

A(F) = —— - +eFs+eFZy(2a)[Ky(2a), . for H, 14
(F) 4oy K,(2a) +eFs+eFZy( a)[ o(2a), . for (14)

and by
e? Zdo(2s, 2a)— I (s, 2a)[4 —2Z 1, (25, 2a)

A(F) = ——
() " dmeg 8 Ko(2a)—2aK,(2a)+a’K,(2a)

1,(s,20)2+ Z ca21, (25, 2a) + eF[ Zy(2a) —2aZ (2 27,02
+a_1(§ a)| e 2(2s, 2a) +eF[Zy(2a) _611( a)+a“Z,(2a)] +eFs, for Cs.

Ko(2a)—2aK,(2a)+ a*K,(2a)

(15)

The functions Z,(«) are given in Appendix IT, and the energy shifts 4, and A(F) are
shown schematically in Fig. Ib. Using this figure we may determine the wavenumbsf, K,
which is equivalent to the electron energy, with zero energy at the bottom of the conduction
band. Because k' is determined by the position of the shifted atomic level it is a function of s

h2%(s)

. = @+Ep—[I~A(F)~eFs], - (16)

where I is the ionization energy of atom.

4. Level broadening (the probability per unit time of the transition of the electron from the
atomic level to the metal) '

As was pointed out by Gurney [6], when the atom is brought closer to the m:tal the
interaction of the atom with metal also causes the broadening of the atomic (ionic) level.
The quantity, I', determining the width of the broaden energy level is related to the transi-
tion probability per unit time of tra isition of the electron from the atomic level to metal

mki? ” " f
ey re ) jd‘P J [Viarl® sin 9d9 = hW, : L17)
T .
BUSOR ol 0 . cop g,

where k is the wavenumber of the electron according to the origin of the level (Fig. | 1b), and
Viae ~ {MIH,, ,|4). (18)
Substituting (3) into (18) and performing integrations (Appendix 1I1) we have

F E=S T(F, S, Zeff)
aZ+(k')? P — :
“ 4a* \/(k,)z‘*‘az‘x —25v% 14.47 . + as” + = F 2 dx, (19)
= — — € — * e 7 7312 <
Vo K IV PR P R B

a?
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for the hydrogen atom, and

r= F(F, S, Zeff)
‘ , e i
4a (K'Y +a*—x _, .= a’s?  x—a?
= — e N 14472 | — — + —55
Vo f K e 2 LR >
a2
a® 2a  3a® 2a 34° ‘ 2
4 3
[ (=) (G ) e e

for the cesium atom.

5. Self-consistent calculation of the effective charge on adatom (adion)

As can b¢ seen from the above considerations, both the energy shift, AE, and width,
I', depend on the eﬁ'eétive charge number, Z_

AE = AE(s, F, Zy), I =1TI(s, F,Zy). (1)

On the other hand, Z.; is a function of 4 and I' [3, 8]

1 I—A(s, F, Zoc)—
Zoe = 1— — Jarctg ( = fu | | T 22)
T I'(s, F, Z) 2|

Thus; for calculating Z.; equations (21-22) must be solved self-consistently. Note that the
effective charge depends also on the crystallographic direction of the considered plane
of a metallic monocrystal: This dependence enters in (22) via ¢ = @(hkl), where A, kyl
are Miiller indices. ‘

6. Results and discussion

Below we shall give the results of numerical calculations. All these calculations were
carried out for hydrogen, helium and cesium atoms close to the tungsten surface. For
tungsten, we have accepted n = 6 conducting clectrons per atom. This number is the chem-
ical valency of W. Such a number of free electrons per atom gives a Fermi energy equal

TABLE I

Parameters of H and Cs atoms and of the metal used in numerical computations

|

Atom ' a(A-) I(eV) . Metal
— — ; — -
H | 1.89 13.54 g =45¢eV
P — . — _ L —_—
Cs 0.99 3.86 | Er = 18.99¢V
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to 18.99 eV. It should be noted that the earlier works were based on the assumption that

the Fermi energy of tungsten is approximately 10 eV. However, as follows from numerical

calculations, the final results are practically identical for both values of the Fermi energies.
All parameters used in numerical computations are given in Table I.

(i) Adsorption of cesium. The computed self-consistent values of the effective charge,
Z., on adatom, the energy shift, 4, and the width of the broaden energy level, I', as a func-
tion of the external field strength, F, are given for cesium in Table (I for s = 3 A. From
the data in Table II it follows that the external field weakly influences the effective charge
of cesium adion and the width, but distinctly changés the energy shift, A.

TABLE 11
Field (F) dependences of: effective charge Z = Z i on adatom, energy shift, A, and the width, I" for
s=3A
F(V/A) ‘ z 4 (V) [ I'(eV)
0.1 ] 0.891 0810 ] 0.512
0.2 | 0.910 1.189 0.516
0.3 I 0.925 1.553 0.512
0.4 0.936 1.907 | 0.504
e ! = ‘
1 0.970 3.951 | 0.420

Taking the value of the desorption field as Fy, = 0.3 and 0.4 V/A (according to [1]) and
values of A(F) and I' from Table II, we observe that the quantity

& _ p—I+A(F)
r ir

[N

is much greater than unity. This confirms the suggestion of Todd and Rhodin [1], that
only the extreme tail of the Lorentzian state will overlap the occupied metal states upon
application of Fj,.

Approximating the dependence of the effective charge of F given in Table II by the
expression

Z4(F) = 0.11F +0.88,

one may estimate the change in the adsorption enefgy as a function of the external field,
as follows:

dz
Aq(F) = eZZesz(F) f 4(Z+F)_qo ~ 0.193F,
s=3A ¢ .
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where k; ! is the screening length (= 0.6 A for tungsten) aad ¢, is the adsorption heat
for F = 0.
This result is in accordance with experimental observations [9].

(if) Critical distance of field ionization. 1t is well known [2] that there is a critical dis-
tance, s, below which the image atoms can not be ionized in the field ion microscope. This
distance is determined by a condition where at s the following equality is fulfilled:

2

450 +eFs? = I+% Fa,~a;), (23)

P+

where «, and a; are the polarizabilities of an atom and of a created ion, respectively. Because
the difference e?/4s? —3F*(o,—a;) is small in comparison with /—¢ we may neglect it.
This gives

@+eFs) ~ I (23a)

However, expressions (23) and (23a) are not quite correct from the quantum-mechanical
point ot view. That is, as can be seen from (13), the energy shift in the presence of an external
electric field is the sum of the zero-field energy shitt, 4o, and the field depending terms.
Therefore, condition (23a), determining the critical distance, s°, changes to the form
(Fig. 1b)

@+eFs, ~ I—A(F). 24)

1
1 2 3 4 F(V/A) 5

Fig. 2. The critical distance, s, of field ionization vs field strength F

The self-consistently computed dependence of s, on Fis shown in Fig. 2. The procedure
for the computation of s,(F) for helium is described in [10]. From Fig. 2 it follows that the
true value of the critical distance should be smaller than that computed from (23a) for
proper values of ionizing field strengths.
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APPENDIX II

0 o0

1 1 Z
Z_ (o) = > J dzdxdy —e .
T ¥

—(s—s0) —

Using the inverse of the Fourier transform [5]

we have:

1 r et
Z_i(a) = o J dzz J d*ydxdy .

—(s—s0)

I ixaz 1 : ~(s=50)x §—35g 1
=L [ [[ e st = e [ 5]

- (s—50)

The y; integration was done by calculating the residues at the poles y3 = ix when
z>0, and x5 = —ia when z < 0. The other integrals are obtained by differentiation with
respect to the parameter, o:

o0 0

5 o 74 T S—SO 1 Y]
Zo(w) = — 5’ dzdxdy — e = (s—S$p) —= + 5 |e
! r o o

—(s—s0) —©

5—§ S e a s—s5)>  3(s—s 37 _,._
+|:_1%+’z:|e(ss°)a=|:( 20)+(30)+__Zile(sso)z’

27 o o o o

0 0
Zy@ = — 5 Zo(®, Zx(®) = — 1

APPENDIX III

o0

0
. 1
Viag =~ {paHpplpay = C Je’kJéf Texp [—ar+i(k,x+k,y)]fdzdxdy

0 9]
+D | %(s+2) ff gk tkag=arfdzdxdy,
—8 — o0

Zge® N , N ,
" sy P D= eF s

where f = 1 for H and f = 1—ar for Cs, N = a*/?n" "2,

=
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The integral has been restricted to the region outside the metal [5, 6]. Now we shall
compute the integral of the type

fes]
j‘j‘ é t(k1x+kzy)rne—ardxdy7
- 00

where n = —1,0, 1,2, ... Using the inverse of the Fourier transform

. B
1 & ‘
= ggﬂfa—zﬂz P =ik

we have
éo 1x3z
ﬂ sty =1y — ) f o)k + 1)
5 ]1 ezx3z y oz ~G|z|
= = 4ri : =1
a +k +k2+X3 4 [X3+8iG]x3=siG = G ’
where

G=ad+ k§+k§.

The x5 integration was done by calculating the residues at the poles y; = iG when z > 0,
and y; = —iG when z < 0.

The other integrals: of this type are obtamed by dlﬂ‘erentlatlon with respect to param-

eter a
_00‘ . o
. o d -
jfel(k1x+k2y)e ardxdy - a; el(k1x+k2y)r—1e—ardxdy
- o —o

8 ( e dh 9G 3 fe O
= — — 21‘[ ) = — 27t
6a‘<ﬂ G . da 6G< )

_ izl  a oG a
=2 Giz| fl_ L h g e e
» e <G2 o3, Where = o

0

f{ei"‘"‘“‘”)re""dxdy — Tl ;ff éi(k‘x+k2y)e_“rdxdy
. a

— 0

21,12 2 2
o e [@l2) (30 1 322 1
b [—G3 &~ &) e gl
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Therefore, for H ws have

7 0
Viag = 27C J‘ e*¥G e gz 1 2nD J [ei'”é(s“'z)e-(;[zl (% N Ea§> dz]

0 0
= 2nCe” %G1 sz+2nDe"Gs J (— %.z_ + é) (s42)dz = 2nCe” %sG™*
-s -5

3 2
_ as as
+2nDe s I:% —G—Z +% 'G—sjl 5

where the conservation of energy was used: k2 = —a?, consequently, G+ik; = 0.
For Cs we have

31,12 2
. _ 3 1
+2TED J‘elksg(Z"'s)e G|z| [ili! + ._a_ =, i__lil_ —a (_G% = ?] lzl
< ‘

-S

3¢> 1 —esf 8% G*—a?
e )T \Tre T e 2

3.4 3 3
@ a’s 2a 3a 2a 3a
fags s[“%?‘ +—:—;(? ) e )

The probability of the transition betwesn eigenstates per unit of time is given for H by

2® w2
m|le3.J‘ . 8mlkle
W= -5 | dp | |Vicl?sin 0d6 =
h72m*; ) J

2n /2
Zyce S as® as® &
[jd¢ J‘ kgze—ZGs ['— —4% 6 + (%Ez— +% F) F] sin 6d6.
0 V]

In this expression k3 and G are functions of 6. We will choose X = G? as the integration
variable. We have k3 = k' cos @ and

X = G?® = a®+k2+k% = a®+k'*sin’ 0,
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from which we deduce dX = 2kj sin 6 cos 0. Finally we obtain

a2+k2

dg*e? NP ra? =X Z gses as® as® ’
W = ae e—2s«/X : _—ff.l/—Z-F —-i—%w F) dx,
v, k 4neo X 6X "X
where
7 h2k?
°7 om
For Cs we find
a’+k'2
da*e? _ VK?¢a* =X Zyse a’s* X-d*
W= 25 VX X -+ N
W, k dme, X X3
a2
e 2a 3a° 2a 3a® 2 .
()i (5 - e ) (o - 5w ax
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