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CHANGES OF ELASTIC CONSTANTS IN STRUCTURAL PHASE
TRANSITIONS. II. ELASTIC PHASE TRANSITIONS

By K. PARLINSKI
Institute of Nuclear Physics, Cracow*
( Received February 13, 1980)

In the framework of the Landau phenomenological theory the behaviour of the elastic
constants associated with all elastic structural phase transitions induced by a one-dimensional
irreducible representation of the high symmetry point group, are found. A dimensional
analysis has established that the critical behaviour of the elastic constants is correctly described
by the phenomenological theory.

1. Introduction

In the previous paper [1], further referred to as I, the general expansion of the free
energy of the crystal (I-7) in the vicinity of the structural phase transition point was given.
In this approach the state of a crystal is specified by the temperature 7 and the components
of the normal strain S,. The crystal is stable if all normal effective elasti¢ constants are
positive. If one normal elastic constant vanishes at a given temperature then the crystal
becomes mechanically unstable and undergoes an elastic phase transition. This occurs
either as a result of the vanishing of the normal elastic constant itself or as a result of soft
behaviour of a normal mode that has the same symmetry as one of the components of the
normal strain S,.

All elastic phase transitions are equi-translational, which means that they are not
accompanied by an enlargement of the unit cell; therefore the active normal mode which
causes the symmetry reduction is always labelled by the wave vector & = 0. The elastic
phase transitions have been listed by Aubry and Pick [2], who have also shown that the
soft modes which induce the elastic phase transitions are always Raman active in the high
and low symmetry phases. If the soft mode in the high symmetry phase is not Raman active
then the phase transition is non-elastic. An example of the elastic phasetransitionis KH,PO,,
which lowers its’ symmetry at 122 K from tetragonal (/42d) (point group 42in) to ortho-
rhombic (Fdd2) (point group mm2) by B, irreducible representation at k = 0 [3, 4].
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In comparison with the non-elastic phase transitions [1], owing to the highly anisotropic
nature of critical fluctuations, the elastic phase transitions exhibit completely different
critical behaviour. It is well-known that a normal strain (except for a totally symmetric
one) is related to a transverse elastic wave propagating in the crystal. Moreover, a softening
of an effective normal elastic constant corresponds to a softening of specific elastic modes
which propagate either along a definite direction (one-dimensional critical fluctuations)
or in a definite plane (two-dimensional critical fluctuations). Such low dimensionality of
critical fluctuations suppresses the critical behaviour to such a degree that the classical
phenomenological theory gives a correct description for those elastic phase transitions
which have a one-component order parameter.

Below, we shall confine the discussion to such elastic phase transitions which are
induced by one-dimensional active irreducible representations of the high symmetry phase.
Then, we consider the changes of the elastic constants in the vicinity of the phase transition
and prove that the influence of different strain components on the critical behaviour of
a given phase transition is inessential.

2. The phenomenological theory

The free energy (I-7) of a crystal in the vicinity of the elastic phase transition point
written in terms of fluctuations at the absence of stress has a form

F = F(F, {Sa})+%};“2uﬁszs,;+1g ; CopySaSpSy oo )
&, aBy

where
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and M(j,j") stands for M(57) in (I-11). This form arises if one introduces into (1-7) the
effective elastic constants (I-14, 15) and substitutes the g,; variable by a new variable #;
according to (I-10). The mixed third order terms s,55¢0; and s,70;f0; have been omitted
as not essential in the following discussion. Since, the considerations are confined to the
case when the active normal mode transforms according to a one-dimensional irreducible
representation, the third-order invariant vanishes i.e. ¢, = 0.

The phase transition is elastic when at least one coefficieat U,(j.) (see I-5) of the linear
coupling between the normal strain and the active normal mode does not vanish. It happens
when I', — the associated irreducible representation of the normai strain is the same as
I'y;, — the irreducible representation of the active normal mode. In this case the equilibrium
. equation (I-12) can be approximately solved in the vicinity of the critical temperature.

Neglécting the square terms, we find for non-zero componeénts of U,(j,)

caSac—l- Ua(jc)QOjc =’09 (2)
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and for the remaining components
¢S, = 0. ®)

Thus, in the high symmetry phase S, = Q, ; = 0 and the effective elastic constants
are given by

me = ca—io—j.l:(T) [Ua(jc)]z‘ (4)

The bare clastic constant ¢, and the coefficient [U,(j,)]? are positive and do not depend on
temperature. On the other hand, the 4,; (7) is a linear function of temperature. Thus,
the temperature of the elastic phase transition is defined by the condition ¢, (7,.) = 0
for the active and effective elastic constant. Such transition can be initiated by the active
soft mode for which the value A,;(7) decreases when the transition temperature is
approached from the high symmetry phase side. At T, the Ao, (7,,) remains still finite
and positive. Above T, the function R(0, j,, T) which stands for R(})c?c) in (I-19) can
be simplified into the following form

R(Oajca T) . )*Ojc(T') > 0 (5)

In the low symmetry phase, according to (3), the static normal strains S, which do not
transform according to the active irreducible representation can be meglected. Hence,

ZﬁKaﬂ(jc)SaSﬁ = 0: (6)

since K, (j.) = O for active I',. Furthermore, the expression > L0, j., j.)S, vanishes since

[1

the non-zero components of L0, j,, j.) are associated with the totally symmetric repre-
sentation whereas the leading term in strain S, belongs to active I',. In the approximation,
when ¢,— 45 [U,(j.)]> > 0, one finds

Qoo = * {—63‘1 (3) [AOJ-C(T)—c;l[Ua(jc>]ZJ}1/2~ e s ™
and
S, = ~¢; 'U(je)Qojo ~ |T =T, ['?, (8)
and from (I-13)
RO, jes T) = =2[20;(T)~c; '[ULj)T ]+ ¢z '[UL)T > 0. @

Quantity R(0, j,, T) as a function of temperature is twice as steep in the low as in the high
symmetry phase. At T, it has a finite positive value. The R(0, j,, T) may represent the
square of the energy of the soft optic phonon at k& = 0. From (I-8) and (I-11), we find
also that

Na(oajc) = Uu(jc)’ M(Oa.]c) = R—I(O: jc)" (10)
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The effective elastic constants can be calculated on the basis of the formula (I-15).
The symmetries of the tensors U(j,), K;;(j.) and L0, j,, j;) have been found by the method
described in 1. The non-zero components of the third order elastic constants are listed
in [5]. In Table I the tensor of the effective elastic constants, the high G and low F symmetry

TABLE I

Tensors of elastic constants in a vicinity of equi-translational elastic phase transitions induced by one-
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point groups, the symmetry of the active normal mode and the restrictions imposed on
the strain components ¥, (I-17), are listed. The abbreviations are summarized in Table II.
The tensors in the high and low symmetry phases are written in the conventional coordinate
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TABLE 1I

Summary of abbreviations

R = RO, j, T) L; = L0, j, jo)
Q = Qoj. Ky = Kil(jc)ﬁ
U; = Uo) by = eyt '21 ciiVi

=
A = by —L}Q*R™ a = KQ—-L,U,QR?
B = b;,—~L2Q°R™ b = K3, Q—L,U,QR™?
C = by —L2Q?R™ ¢ = K:uQ—LsU, QR
D = by3—LL3;Q*R! d = KQ—LUsQR™
E = by, —L3Q*R™ e = KyQ~LUsQR™
F = b1,—L;L;Q’°R™ S = K36Q—-L3Us QR
G = by3—L,L:Q*R* g = K4sQ—LsU,QR*
H = bs —LZQZR“1 h = Ks¢Q—LsUsQR™
= b15——L1L5Q2R f m = bsuy+KiaQ
J = bys—L,L;Q*R™* n = b44—K44Q
M = b3s—L3LsQ°R™* r = KisQ
N = b 1+ K1 @~ (L @+ U)°R™ r =bi+KisQ—(LiQ+ U )UsR™
P =5 K10~ (Li@—U)*R™ s = —bis+Ki6Q—(L1Q—-U)UsR™*
S = b33—LIQ*R! t = K3eQ~L3;UsQR
T =b;, (LZQ2 UHR™ u = b~ UIR™
14 = b +K13Q (L1Q+ Ul)L3Q.R— v = b45“ U4U5R‘1
W= b 13Q (L1Q UI)LSQR~1 w = bss—‘ U‘?R_l

systems with one exception, namely, the tensors for mmm, mm2, 222 and mm?2 point groups
appearing as a result of symmetry lowering of 4/mmm, A2m, 422, 4mm point groups by
B, B,, B, and B, irreducible representations, respectively, are turned around z axis by
45° with respect to the orthorhombic conventional coordinate system. For the elastic
phase transitioas listed in Table I the difference ¢, ;~c¢; , remains constant. Also, all effective
elastic constants are continuous functions of temperature. Their temperature dependence
can be easily deduced from the relations (5)—(9).

3. Critical fluctuations

The critical behaviour of the order parameter of the elastic phase transition was studied
by Folk, Iro and Schwabl [6]. Below, we discuss the influence of other strain components
on the critical fluctuations of the soft normal strain. We write down the local free energy
density in terms of the long-wavelengih strains. Making use of (1), aad writting down
the coefficients in Cartesian axes notation one finds in the hydrodynamic limit

F=Fo+3fdx ;l Cijalif(X)0(x) +§ [ d°x ; Cigtapalif(X)0a(X)0p(x) + ... (11)
ijk . ijaipg

where 7 = x, y, z and d denotes the dimensionality of the space. We denote

0ii(x) = 3 01,(o) exp (ik x)3,(K), (12)



202

where s,(k) is the Fourier component of the normal strain characterized by the wave vector
k. The local strain is related to the local displacement vector

ui(x) = ; ei(k’ Q) exp (lk ' x)ukg (13)
via
o [Oulx)  Ouyx)
v;(x) = 2( o, + o, ) (14)

The orthonormalized eigenvectors e, (k, ¢) and corresponding eigenvalues ¢, (k) of
elastic modes are determined by the Christoffel equation

ZkAik(k)ek(ks 0) = c,(kei(k, @), (15)
where
Ay(k) = Z Cigak sk (16)

and k, k, are the Cartesian components of the wave vector k. The knowledge of the polari-
zation vector of an elastic mode g propagating along k permits us to describe the square
of the wave speed

c(k) = Zk ei(k, Q)Ay(K)e(k; 0)- 17
Now, the local free energy density can be expressed in terms of normal coordinates of the
elastic waves, namely

F = F0+%‘ kZ Eg(k)ukeu_kg
{14

i3 k, k, k :
+ 3 z d (Ql 5 Qi) UgyorUkpgotizo 01+ Ra+R3)+ oo (18)

1
kik2k3
210203

where

k, k, k z z 15
d <Qi QZ QZ) = ( cijklquljk21k3q) ei(ky, 01)en(kss QZ)ep(k3:l 03)-
tkp

Jlg

Near to elastic phase transition associated with one-component order parameter
the softening of the transverse elastic mode occurs in one special direction k© (and equiva-
lent directions allowed by the symmetry) for which ¢, (k) — 0 as T — T,. The critical
fluctuations are expected to occur just around this special direction. Apart from the soft
elastic mode, there are two other elastic modes ¢, (k) and c,, (k') propagating along
the same direction k£ with generally different speeds. The special direction k© and the
elastic wave velocities and their polarization vectors together with those normal expressions
of clastic constants which vanish at T, are listed in Table III.
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Consider elastic modes which propagate along a direction k slightly deviated from
a special direction k“ and decompose the three-dimensional wave vector k = (p, r, 1)
into a special component p = k© of dimensionality m = 1 and remaining d—m = 2
components r and ¢ (d — dimensionality of k space). The approximate speed of three
elastic waves in the slightly deviated direction k& can be found from (17) by substituting
there the relevant polarization vectors e(k‘”, g) of a mode propagating along k'), instead
of an exact polarization vector e(k, ). After such modifications the free energy density

takes the form
(1)
F = Fo"‘% Z {(Cgcpz+P4+chr2+Bect2)”kgcu—kgc
k

+ (Eexpz + Aexr2 + Bextz)ukmu—kex + (Eezpz + Aezrz + Beztz)ukezu—kez}
)
—i i "
+ <—6_> E S(ky+ky+k3) {(d'pipors+d" pipata)ii, g M tise.

kik2ks
+d1P1D2D3Uk 0 Mkrotcser T A2 1P2P 310 Mhro sz ) 19

One notices here an additional term p* which represents the gradient term [6] along the
special direction k') of the active strain component. The summations over the wave vector
can be restricted into a cylinder around the special direction. This soft sector is indicated
on top of the summation symbols. The 4,, B, coefficient are expressed by the remaining
effective elastic constants. The third order terms follow immediately from the symmetry of
dijuip, cocfficients [5]. In the above free energy density only those third order terms are
left which might be relevant in the critical behaviour. The first two terms represent a coupling
of different components of the same critical mode and the remaining two describe the
coupling between two displacement modes. One notices an analogy between these third
order terms and the coupling terms L,s,(k)qi,q -k, —x,(1-26) which prove to be relevant
in the non-elastic phase transitions. The coefficient standing by the term pipapatiy, o Urotkso.
vanishes by symmetry.

The orthorhombic point group 222 will be used for illustration. The elastic phase
transition is associated with the B, irreducible representation. The transverse elastic mode
that propagates along the x axis with the speed specified by the cg¢ elastic constant and
with the polarization vector parallel to the y axis is expected to be soft (Table I). The relevant
free energy density (19) then takes the form

. (€5 N -
F =Fo+3 ), {(c66k32c+622k3+c44k5)uk9cu—kgc
£ .

+(¢y k2 +Cocky + ESSki)ukgiu—kgn +(cssk2+ E44k§ +C33K2 ) g ¥ — kg
L
=
+ (?) E S(ky +ky+k3) {3da66K 15K 25Kt 0 M k20 M 200

kikaks

. ]
+d 166K 1xK2xK350k 008k 20. k3015
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To apply the renormalization group procedure to the local free energy density (19)
the summations over the wave vector k should be changed into the integrals over the shell
of the cylinder b~ < p < 1 and by ' < r, ¢ < 1. Then new variables p’ = bp, r' = byr,
1" = byt should be introduced and the normal coordinates uy,, ~ {ethog, a0d g, = {1 otigy, ,
should be rescaled. The coefficients standing by p*, 4,_, c,, terms yield the conditions:
B4 mpg M2 = 1,b7MpT M2 = 1, b2 Mg 0 f,z = 1, respectively. Hence, b, = b2,
(2 =0*"""*and (], = b7 "2 After such specification the factors for the correspond-
ing coupling constants in the renormalized free energy density are

Cou —b*
P’ 4, Bl?c’ 01> €y~ 1
-2
AQI!Z’ Bex,z — b
d/ d”, dl: dz __b-d—rz+m/2‘

We see from this dimensional analysis [7] that at the fixed point ¢;. = 0, as it should be.
(In [5] it has been shown that the fourth order term does not introduce any corrections.)
The coupling constants 4,, ,, B,, , become irrelevant for critical fluctuations in the vicinity
of the fixed point. The third order couplmg coefficients d', d”', d,, d, also become irrelevant
provided the dimensionality of the k-space and soft sector are d = 3 and m.= 1, respec-
tively. For the phase traasitions listed in Table I we have m = 1.

The coupling coefficients 4, , B,, ¢,,, ¢,, are not themselves renormalized. However,
in the second order of perturbatlon expanswn they can depend on the third order coupling
coefficients, d’, d”, dy, d, similarly to the elastic constants (I-30) for the non-elastic phase
transitions! Nevertheless, since the d’, d”, d,, d, become irrelevant when the fixed point
is approached all effective elastic constants will behave as predicted by the phenomenolog-
ical theory, the results of which are quoted in Table I and II. This conclusion applies
also to the normal elastic constant associated with the totally symmetric strain and, therefore,
dilatation does not accompany the elastic phase transition. So, the elastic phase transition
exhibits the classical critical behaviour for which the phenomenological Landau theory
becomes exact and for which the critical exponents assume the Landau values.

REFERENCES

{1] K. Parliniski, Acta Phys. Pol. A58, 183 (1980).

[2] S. Aubry, R. Pick, J. Phys. (France) 32, 657 (1971).

[3] C. W. Garland, D. B. Nowotny, Phys. Rev. 177, 971 (1969). )
[4]1 E. M. Brody, H. Z. Cummins, Phys. Rev. Lett. 21, 1263 (1968).
[5] K. Brugger, J. Appl. Phys. 36, 759 (1965).

[6] R. Folk, H. Iro, F. Schwabl, Z. Phys. B25, 69 (1976).

[71 K. G. Wilson, J. Kogut, Phys. Rep. 12C, 77 (1974).



