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The problem of coordinate, transformations in classical equilibrium phenomenological
thermodynamics has been solved due to the recognition of the mathematical structure of
the space of thermodynamic parameters. Moreover, this structure (contact structure) enables
one to introduce, in an intrinsic manner, Lie and semi-Lie algebraic structures to thermo-
dynamics. Three types of brackets are defined which are invariants of any thermodynami-
cally admissible transformation. The role of the so called Legendre transformations consid--
ered by Gibbs has been recognized as a special subgroup of contact transformations.

. Introduction -

In the development of geometrical theories of equilibrium phenomenological thermo-
dynamics (EPT) one can observe two main lines. One completely developed by Gibbs
[11} and the second originated by Carathéodory [7] and developed by Born [4] (cf. also
Landé [15]). '

In Carathéodory’s approach the main stress was put on the formulation of the second
law of thermodynamics, i.e., on the well-known principle of inaccessibility. This formulation
was based on his theorem from the theory of partial differential equations. However,
later on mathematicians found his proof to be incomplete and it was even not clear whether
this theorem is valid locally or globally. Bernstein [2] and Boyling [5] have proved the
global version of this theorem. The main shortcomings of Carathéodory’s approach
relied on the definition of a thermodynamic space suitable to a given thermodynamic
system. According to him it was just a collection of any independent directly measurable
thermodynamic parameters which was treated as cartesian coordinates. Tn such a way
the thermodynamic space was not defined uniquely. For one system one can have different
independent spaces (e.g planes p-V or T-¥). Morcover, in this approach there is no geo--
metrical distinction between extensive and intensive parameters, what is very important
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for EPT. The main point is, however, that Carathéodory’s space does not carry any geo-
metrical structure and for that reason the problem of coordinate transformations in thermo-
dynamics could not be even stated. The necessity of finding a mathematical scheme which
would take into account the duality between éxtensive and inten-ive parameters and which
could also solve the problem of changes of variables in thermodynamics has been already
recognized by Ehrenfest [10] in 1911.

The thermodynamic space introduced by Gibbs [11], contrary to Carathéodory’s
one, is clearly and uniquely defined. This space (widely known as Gibbs space) is consti-
tuted from n+2 extensive parameters among which # is independent (one parameter can
be eliminated due to the so called homogeneous first-order property of the fundamental
relation, see e.g. Callen [6]). Throughout the paper n is always the same and denotes
the number of degrees of freedom for a thermodynamic system. Tisza [23] called this
space the thermodynamic phase space and Callen [6] thermodynamic configuration space,
respectively. For the simplest thermodynamic system it was 3-dimensional space with
rectangular”coordinate axes labelled by volume V, entropy 'S and internal energy: U (if
the mole number N is assumed to be constant). The relation between these three quanti-
ties U = U(S, V) Gibbs called the fundamental relation and the surface defined by it the
thermodynamic surface. Very important feature of Gibbs’ approach consists in the fact
that it takes into account the distinction between extensive and intensive parameters,
namely the extensive parameters form the thermodynamic space while the intensive ones
are treated as functions on it (they describe just the slope of the thermodynamic surface).
Stability conditions of equilibrium states Gibbs formulated by means of curvature of
the thermodynamic surface. In this point, however, his theory although correct dealt
with undefined mathematical objects. Namely, it is well known that in Gibbs’ space
one cannot introduce any Riemannian metric which would have a thermodynamic
meaning. Consequently, in this space we are not faced with such fundamental mathe-
matical concepts as distance, orthogonality, and curvature. Of course the notion of
curvature one can introduce without metric, namely by means of connection (non-
metrical), but this concept has appeared in mathematics already after Gibbs’ death.
Gibbs’ space although very useful has a great disadvantage, namely it does not carry
any significant geometrical structure and hence the problem of coordinate transfor-
mations in’ thermodynamics could not be stated in full generality. Later on we will
see that the so called Legendre transformations regarded by Gibbs stand for the subgroup
of the more general group of contact transformations.

In our previous paper [18] and in [I9] we have proposed entirely new geometrical
formulation of EPT. The central point of these papers consists in the introduction of a new
thermodynamic space called a thermodynamic phase space (TPS), but not in the sense of
that of Tisza [23]. TPS is larger than spaces done by Gibbs and Carathéodory, e.g., if
Gibbs™ space and Carathéodory’s one have dimensions n+2 and n, respectively, then
dimension of TPS is 2n+1. In [18] and [19] we have constructed TPS as projective fibre
bundle over slightly modified Gibbs space. The modification relies on the replacing exten-
sive parameters by densities. Such procedure reduces dimension of the Gibbs space by
one, but it reflects the fact that the properties of any thermodynamic system do not depend
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on the overall scale of this system. It is convenient to have a space of higher dimension
than the number of degrees of freedom because in such a case equations characteristic
for a given physical theory can be interpreted geometrically as some submanifolds of this
space. We mean here the so called null submanifolds of maximal dimension commonly
called as Lagrangian or Legendre submanifolds. Consequently analysis of a theory can be
replaced by investigation of geometrical properties of such submanifolds (cf., Stawianowski
[21], [22]).

Owing to the concept of TPS the classical thermodynamics has been brought into
the formalism similar to that of classical Hamiltonian mechanics (see the sketch below).

mechanics thermodynamics
Phase space T*Q Thermodynamic phase space M2"*1
W = (D1, cvs D3 Q1> -5 q,) m = (Pi, ..., pp; X% x4, ..., x") € M*"*1
symplectic structure y contact structure 0
v =dp A dgy £ 0 | 0= dx+pdx’ O (d6) £ 0
In In
Configuration space Q ‘ Modified Gibbs space B"*!
| oaw)=¢q=(q% ..., q" | n(m) = x = (x° x1, ..., x"

| metric structure no structure l

Here y denotes the Poincaréinvariant, 8 —energy 1-formin thermodynamics, A — the exterior
product, d—the operation of exterior differentiation and (dO)" = dOA ... AdB (n times).

As we see from this sketch on TPS we have so called contact structure [3} which is
in close relation to the symplectic structure (occurring in mechanics). Moreover, by means
of a contact form 0 we can introduce on TPS Lie algebraic and semi-Lie algebraic structures
similarly as in mechanics by means of the symplectic form 7.

The basic mathematical concepts we use here are differentiable manifolds, fibre
bundles, exterior differential forms and Lie algebras of vector fields and functions. Through
this paper we are confined only to the C® (smooth) objects.

2. Remarks to the second law of thermodynamics
In [18] the second law of thermodynamics has been formulated as Postulate 2.,
namely :

“On TPS there exists a distinguished part y of the energy form 0 called the heat form.
Its rank is equal to two”.

Mathematically it means that dy Ay = 0 and consequently from the Darboux theorem
[1] we know that on M there exist local coordinates in terms of which o assumes the form

y=fdg, fig:M""*' R €))
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Bernstein [2] and Boyling [5] showed that functions fand g are defined globally on M: Be-
cause 0 is defined also globally we have:

Corollary 1: The heat form v is the 1-form reduced to a 2-dimensional submanifold
M?* C M*"*', namely to the submanifold on which coordinate lines are defined (globally)
by fand g; i.e., for 0 we have global decomposition § = y+Q (where Q is defined as

= 0 — ). From this decomposition we have

Corollary 2: Thermodynamic phase space M>""! can be globally decomposed into the
cartesian product of two submanifolds-

M2n+1 MZXMZn 1 (2)

These submanifolds of dimensions 2 and 2r— 1, respectively, are defined by the decomposi-
tion § = p+Q of the contact form @ in the following way. Let us assume that (2) is true
and we have canonical projections

T MY 5 M2, mg MY ML 3

Let ¢ and © denote some (linear) forms of maximal ranks defined, respectively, on’ M?
and M3?" ' such that

Y= n:k{/‘)s ’iplm“l(q) = 0: (4)
where ge M2, peT*M?, v e T*M*"*', 1} denotes the pullback of forms and let

Q = nj‘é: and'1(i) = 05 (5)

where re M1, Qe T*M2" ! and Qe T*M**!. Assuming 0 = nfp+niQ we see
trom (3)~(5) that (2) is satisfied. ' :

" Thus we see that the second law which is a central point of thermodynamics is in
this formalism equivalent to the decomposition of any thermodynamic space onto the
space of the so called thermal parameters M and the space of the so called deformation
parameters M>*~* (cf. e.g., [23]). © can be interpreted within such classical areas of phenom-
enology as mechanics or electrodynamics, but ¢ can be not.

3. Contact transformations of TPS

Introducing in [18] TPS as the projective bundle over slightly modified Gibbs space
_We distinguished‘ carefully between extensive parameters represented there by densities
x°, x1, ..., x" and the intensive parameters represented by p;, ..., p,. But it is no longer
necessary We will no longer distinguish between these two types of parameters as it
is often done in practical applications of thermodynamics, where we measure some combina-
tions of “ordinary” thermodynamic parameters. But in this point we face the problem
of thermodynamically admissible transformations of variables. Quite recently this problem
has been considered, from a similar point of view as here, by Mistura [17]. .
"~ In our approach the problem of transformations of the1modynamlc parameters is
solved automatically due to the recognition of the mathematical structure of TPS. As it
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was pointed out in [18] TPS carries remarkable geometrical structure, namely, the so
called contact structure, i.e., structure defined by differentiable linear form .6 such that
6 A(dO)" # 0 [3]. Due to this we can introduce a more general definition of TPS than that
of [18].

Definition 1: Any 2n+1 dimensional manifold M of all thermodynamic¢ parameters of
a physical system on which there exists a coritact structure defined by the energy 1-form
0 will be called the thermodynamic phase space of the given system.

Shortly, we will denote TPS as a pair (M, 6), where dim M = 2n+1and 0 A (d6)" # 0,
or just as M.

Contact structure of TPS guarantees the full generality of the theory because although
it does not offer any special system of coordinates, nevertheless ensures that the coordi-
nates will appear in canonically conjugated pairs, but one. Moreover, because each con-
tact manifold is locally isomorphic to a projective bundle [1], we are always able to find
an appropriate transformation from a general TPS to a suitable projective bundle and
come back to the “ordinary” thermodynamic parameters. Due to such transformations
on TPS, in fact, we have geometrical distinction between extensive and intensive param-
eters.

Since we have assumed as a primary fact that TPS has a contact structure, the prob-
lem of coordinate transformations in thermodynamics can be completely solved, namely,
in EPT we are confined only to transformations which preserve the contact -structure
of TPS, i.e., to the so called contact transformations. -

Definition 2: A diffeomorphism A : M — M preserving the contact structure, i.e., such
that

A0 = g6, ' (6)

with ¢ being everywhere a nonvanishing function on M will be called a contact diffeo-
morphism.

Note that 00 A (d(e0))" = 0" "8 A (d)" # 0. The transformations of type (6) pre-
serve the contact distribution and, respectively, its Legendre submanifolds [3], but in
general do not preserve the contact form. Automorphisms A: M — M with ¢ = 1 are
called the strict contact transformations. ‘

Let A denote the 1-parameter group of contact diffeomorphisms with elements 4,
depending differentiably on ¢. Then A defines on M the vector field X according to the
formula

d
(Xf) (m) == fA(m)), feC(M,R"), meM. Q)

t=0

The vector field X is called the infinitesimal contact transformation or the contact vector
field. According to the definition of the Lie derivative for any contact vector field X we
have

Lx0 = 1,0, ®
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d . , '
2 ,AF0 = 08, 0,: MxR* - R* and A, and X are related by (7). Conse-

t=0
quently if X is a strict vector field we have (from ¢, = 1 results 7, = 0)

where 7, =

P£x0 = 0. ©)

Let us now examine, from this general point of view, the transformations introduced
to thermodynamics by ‘Gibbs and called in standard textbooks as the Legendre trans-
formations [6]. They form a subgroup of strict contact trahstrmations described locally
by 2rn+1 equations

z = x°—d(p;, X)) }
; ey ; Lj=1,..,n 10

fj=fj(pi>x): gj=gj(piax) ’ (10)
From dz+f;dg; = dx°+p,dx’ results that

09 0g; 5¢’ 98; _
oxt +i oxt B2 i 517;

(11)

But these formulas one can find in every standard textbook of classical mechanics. They
are just conditions that

fj = fj(pi’ xi)a g; = gj(pi’ xi)s Lj=1..,n (12)

are canonical transformations in 2n coordinates with &(p;, x°) as gemerating function.
Thus we sece that in thermodynamics we use only a subgroup of the full contact
group. Hence a possibility appears of introducing much more general transformations
of thermodynamic variables and also of introducing quite new thermodynamic potentials
in addition to those considersd by Gibbs.
The notion of a strict contact vector field enables. us to give a formal geometric de-
finition of a quasistatic process.

Definition 3: A 1-parameter group of special contact transformations of TPS whose genera-
tors fulfill (9) will be called a guasistatic process.

Remember that in phenomenological thermodynamics a quasi-static process is defined
as a one which can be described by differential 1-form.

4. Lie and semi-Lie algebraic structures on IPS

The symplectic structure of mechanical phase space enables one to introduce the Lie
algebra structure (Poisson bracket) in the space of real-valued differentiable functions
on the phase space. Similarly, the contact structure of TPS enables us to intrpduce coun-
terparts of the usual Poisson bracket for real-valued functions on TPS. But because the
contact form is a linear form (the symplectic form is bilinear), we can introduce at least
three different types of brackets which reduce to the standard Poisson bracket in 2z varia-
bles if we project them to 2n-dimensional space with natural symplectic structure defined
by the 2-form df (i.e., to the space defined by x° = const., see below).
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Such brackets are a very useful tool to verify whether any transformation is a contact
or not [12].

First let us quote the following result [20]. ‘
Theorem 1: The set of all contact vector ficlds on (M, 0) constitutes the Lie algebra with
respect to the usual bracket operation.
Proof: Let X and Y be two contact vector fields and let

L =10, L0 = al.
Then
g[X,Y]G = [$X9 g’y]o = ,?X(O'@)—gy(‘l:@) = (gxa—gyt)o.

In order to introduce Lie or quasi-Lie algebraic structures in the space of real-valued
functions on M we have yet ‘o introduce the concepts of two remarkable types of vector
fields on M.

A contact form 8 defines on M 2n-dimensional distribution D by setting

D, = {Xe T,M|0(X) = 0}, (13)

where X is a vector field on M, not necessarily a contact. Because of 0 A (df)" # O there
exists on M 1-dimensional distribution dual to D. Such distribution is determined by
vector field & such that

C0O =1, b X) =0, (14)

for all vector fields X on M. Moreover for M orientable ¢ is defined globally. We call &
the characteristic vector field of the given contact structure. From (14) follows immediately
that

L =0 and Ldb=0,. (15)

ie., 0 and df are invariant under the action of the 1-parameter group generated by &.
Therefore, £ generates the 1-parameter group of strict contact transformations. Remember
that Ly = ax }w)+ X [dw for any differentiable form o and X 1&) denotes the in-
terior product of w by vector field X. Introducing in M local canonical coordinates.
(cf. [18)

x°, xt, , X" Pis -ee» Pn (16)
we have
0
=, 17
=5 (17)

Remark: Notice that the characteristic vector field was already introduced by Cartan
[9], where his {f} defined by (d8)" A df = {f}0 A (df)" is equivalent to our ¢f.

On symplectic manifolds each real-valued function (Hamiltonian) gives rise to the
so called symplectic (Hamiltonian) vector field. We wish to have a similar situation for
contact manifolds.



Let fand g denote real-valued functions on M. Let X  denote the vector field associated
with f defined by

X (2)0 A (dO) = dg A df A O A (dO)"L. (18)

In canonical coordinates (16)

— of o of 0o 1) 6
X =ng - L (Lon L (19
op; 0x op; 0x ox’ Opl
X, is not the contact field because
3;—“9 = —(ENH0+df # o0 (20)

as-we can easy prove e.g. by means of coordmates '
Lemma: £ ;.0 = df.
Proof: L0 =fZL0 4+ df A g{@ = df. We have used here (15), (14) and the property
o A f = fo for exterior product of a form  and a function f.

According to (20) and the above Lemma we are already able to adjust to each function
f the appropriate coatact field, namely

(€0 = df—Z3,0 = (L~ Lx)0 = Ly, 0,

where
X ; will be called the contact vector field related to the contact Hamiltonian f. Tn coordinates
(16) we have
of of ¢ of of
s (f p‘ﬁp,)@x T om % (6x ~Pia0; ap, 22)

Remark: For another construction of X, see Kobayashi [14] or Hatakeyama [13].
Notice that 6(X;) = f while 8(X,) = 0.
Having 6, ¢, X, and X ; we will introduce now, one after the other, three types of
brackets on M.

Definition 4. Let f, g denote two contact Hamiltonians on M. The Poisson bracket {f, 8}
of fand g we will call the contact Hamiltonian associated to contact vector field [X, X,],
i.e.,

{f. g} = 06X, X, ]- (23)
In coordinates (16)

of o o %8 o 9g\ Og. 6f>
3rg) R i S U PRI P & P T e
g ap; ox° ox' dp, 0x° (g P . ox° f=p op; @4
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From the definition (23) we immediately obtain the following properties for this bracket:
P1. antisymmetry, {f,g} = —{g.f},

P2. bilinearity, {f, ags+Bg:} = a{f, g} +B{f. g2}, o, Be R,

P3. Jacobi’s identity {f,{g, h}}+{g, {h.f}}+{h, {f. 8}} =0, f, g, he C*(M).
Moreover, by means of coordinates it can be proved that {f; g} can be defined as

P4. {f, g} = X, (g —&(sg

“From P1. to P3. we sce that the Poisson bracket introduces the Lie algebraic ‘structure
in the space of C* functions on M. For canonical coordinates we have

% =—x Opr=0 L =0

{pls pk} : 09 {xl: pk} = _5;c (25)
Definition 5. The Cartan bracket [f,glof f, g e’C*(M ) we define as
[f. g] = X (o). (26)
In coordinates
of og of aog - of og of og
Do e s Pi\>5 7~ A A0 @7
Op;- 0x ox' 0p; \0x"~ dp; 0p; 0x

Remark: From the definition of X 7 (18) immediately results equivalent definition of [f, gl,
namely

[f. g10 A (d0)" = dg A df A 6 A (d6)" ™. (28)

This type of bracket we call “Cartan bracket” because in the invariant form (28) it has
been for the first time introduced by Cartan [9]. Carathéodory called it “die eckige Klam-
mer” [8]. Properties of this bracket are as follows:

Cl. antisymmetry, results from (28),

C2. bilinearity, results from (28), , ,
C3. [f, [g Ml +1g. [h, [N+ 4 [ g1l = &(f) [g, M+ &(2) [h, f1HEA) [, g1 (cf. [8], or [16]).
Bracket [f, g] can be also defined alternatively as

C4. [f, 8] = f(g)—X((g), or

Cs. [f. gl = do(X,, X)) : ;

The property C4. results immediately from the definition of X, while C5. results from the
relations Zx0 = d(X|60)+X|df, Lx,0 = ((g)0 and from C4., namely

dO(X,, X ) = (X|d0) (X,) = (gxgo-d(_g(ﬁ\e)) (X))
| = (&g)0—dg) (X)) = fE(®)— X ((2)-
For canonical coordinates
[x,xT=0, [x%pl=-p [xxT=0,
[P pd =0, [ p] = 6. (29)
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Relation between these two brackets has the form

{l, &} = fd)—-2&(H -1/, gl (30)
Definition 6. The Lagrange bracket (f, g) we define as
(f, 8 = X,(g)- (G

In coordinates -

of Og of og = [(of og of 0g dg
=~ +nl = — e | B 5
op; Ox ox' dp; - 0x” dp;  Op; 0x 0x
This bracket is not antisymmetric. But instead of skew-symmetry we have (from the de-
finitions of X, and X )
L1. (f,8)+(8.f) = f&(g) +&&(f).
The next properties are
L2. bilinearity,
L3. (f.8) = {/. g} +i(f)g, from P4,

L4. (f.9) = fel@—If. gl, from C4.
For canonical eoordinates

(32)

(xO, xl) = 0, (xl’ xO)- = xla (XO’ pl) =P (ph xo) = =D
(xl’ xk) = (xk’ xl) = 05 (pla pk) e (pk’ pl) = 05

Ghp) = =6 (o) =4, (33)
Bracket (f, g} is not skew-symmetric and hence we have to write two times more relations
as for two foregoing cases.

If we restrict ourselves only to functions f, g for which &(f) =-&(g) = 0, then the three
types of brackets reduce (within the sign) to the usual Poisson bracket in 2r variables
(pi, x’). It is obvious because in each contact manifold a structure of a 1-dimensional
fibre bundle [20] can be introduced. We have already stated that integral curves of the
field £ for orientable contact manifolds are defined globally. If we assume these curves
as fibres and introduce in M an equivalence relation ~ such that two points m,, m, € M
are in relation, m; ~ m, if and only it m, and m, ‘belong to the same fibre, then the quo-
tient space Mj~ can be treated as the base space of the mentioned fibre bundle, and,
moreover, it bears symplectic structure induced by the contact structure on M.

These three types of brackets stand for the very convenient tool in order to prove
whether any transformation of thermodynamical variables is admissible or not, i.e., to
prove whether it is contact transformation or not. This is due to the following theorem.
Theorem 2. If A: M — M is a contact diffeomorphism such that A%0 =. @0 and fand g
are functions on M such that A*f = F and A*g = G then for all types of brackets we have

IF, Gl = oI, g, (34)
where |-, -| denotes symbolically the three types of brackets.
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Proof: Let A, denote the induced by A transformation of vector ficlds tangent to M.
Then from (14) we see that 4,{ = ¢~ *¢. Similarly, from (18) 4, X, = ¢~*X, and conse-
quently from (21) A*X, = ¢='X,. Now (34) follows immediately from P4., (26) and (31).
Corollary: All three brackets are invariant under the strict contact transformations.

Thus in thermodynamics we are confined only to such changes of parameters which
preserve the above three types of brackets up to a multiplicative Tunction.

Remark: Formula (34) has been proved in local coordinates by Carathéodory [8] for the
Poisson and Cartan brackets. The more complicated proof for the Cartan bracket can
be also found in [12].

To this end let us stress that the above three types of brackets are defined here by
means of the contact form 0 only, without any reference to even dimensional spaces (sym-
plectization of a contact manifold) as was done in [1] or [8].

I'am indebted to Professor R. S. Ingarden for his critical permanent interest in
this work.
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