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The tensor of the elastic constants in the vicinity of the structural phase transition is
considered in the framework of the phenomenological theory. The behaviour and changes
of the elastic constants associated with all equi-translational non-elastic structural phase
transitions induced by a one-dimensional irreducible representation of the high symmetry
group, are found on the basis of the symmetry relations. With the aid of the renormalization
group approach, it is established which elastic constants show a critical behaviour.

1. Introduction

The behaviour of the clastic constants of a crystal in the vicinity of the structural
phase transition point can be considered in the framework of the phenomenological theory
of Landau and Lifshitz [1, 2]. The main idea of a reduction of the symmetry of a crystal
by an active mode which is associated ‘with the relevant irreducible representation involves
specific changes of the elastic constants. These changes depend upon the symmetry of the
high and low symmetry phase and on the active irreducible representation.

Phase transitions can be divided into non-elastic and elastic ones. The non-elastic
phase transition is associated with an active mode whose symmetry differs from that of
any of the normal homogeneous strains of the crystal. Hence it follows that the equi-
-translational phase transitions with an active mode in the center of the Brillouin zone
which has not the symmetry of the normal strain, and all phase transitions accompanied

. by an enlargement of the unit cell with the wave vector out of the center of the Brillouin
zone, are non-elastic. In the elastic phase transition the symmetries of the active normal
mode and of one of the normal strains are the same. The phase transition from hexagonal
B-quartz (P6,22) (point group 622) to trigonal a-quartz (P3,21) (point group 32) at 846K
induced by B, irreducible representation at k = 0 is an example of the non-clastic phase
transition [3].

* Part of the work has been done during the stay in the Joint Institute of Nuclear Research, Dubna.
** Address: Instytut Fizyki Jadrowej, Radzikowskiego 152, 31-342 Krakéw, Poland.
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Taking into account the symmetry of the phase and the symmetry of the active normal
mode, it is possible, on the basis of the phenomenological theory, to describe the timpera-
ture behaviour of the elastic constants in the vicinity of the phase transition point [4].
However, the critical fluctuations of the active normal mode are, as a rule, coupled to the
elastic degree of freedom. For non-elastic phase transitions associated with one-dimensional
irreducible representation the result is as follows. The elastic constants which describe
the totally symmetric strain which in fact denotes the dilatation of the crystal show temper-
ature behaviour different from predictions of the phenomenological theory. Moreover,
such critical behaviour of the clastic constant is expected to lead to the fivst order phase
transition, except when the critical temperature does not change under hydrostatic pres-
sure. Then the phase transition associated with a one-dimensional irreducible representa-
tion remains of the second order.

We start off with the free energy expansion in terms of the active normal mode ampli-
tudes and the normal strains and next derive the set of equilibrium equations, and the
formula which describes the bebaviour of the elastic constants in a vicinity of the phase
transition. The elastic constants are writien explicitly for equi-translational non-elastic
phase transitions with the active normal mode which transforms according to a one-di-
mensional irreducible representation. To decide whether a given elastig constant is modula-
ted by the critical fluctuations we set up the local free energy density in the hydrodynamic
Timit and derive a set of the renormalization group recurrence relations. The elastic phase
transitions will be discussed in the next paper [5].

2. The phenomenological theory

A state of a crystal can be described by temperature T and the components of the
symmetric strain tensor ¥} (f = 1,2... 6 — the usual Voigh notation). Components VY
specify a homogeneous strain of the crystal. Under a set of symmetry elements which form
.a space group of a crystal its density is invariant. The irreducible representations of the
;spacé group, in turn, are indexed by the wave vector k and the number of the irreducible
representation of the little group. The homogencous strain of an infinite wavelength,
is classificd by k = 0 and irreducible representations of thc point group of the crystal.

It is convenient to introduce the normal strain components SO, ¢ = 1,2, ... 6, so
that

Sg =Y, a)Vy. €y

-Coefficients o(a) are the eigenvectors of the bare elastic constant tensor c;, namely

Zz: caoi(0) = ,04a). )

“The o(2) are real and orthonormal [6]. The six-component eigenvector a(«) transforms
according to one of the irreducible representation I', of the point group of the crystal.
8% denotes the amplitude of a given normal strain. For example, the general strain in
.a-cubic crystal with the point group m3m can be decoupled into 4,,+E,+T,, irreducible



representations, and then the corresponding. normal elastic constants are ¢;q+2¢12,
ci11—Cqo and cgq. :

The free energy of a crystal F = F(T,S?, S5, ... Sg, {09;}) is a function of tempera-
ture 7 and the homogeneous strain Sy. It is useful, however, to introduce, apart from inde-
pendent variables 7' and S7, a set of dependent variables, i.c. a set of the generalized nor-
mal modes amplitudes Qp ;- BEach normal mode is specified by an irreducible representa-
tion of the space group I'y; i.e. by a particular wave vector k and the irreducible representa-
tion of the relevant little group. Index j numbers both the irreducible representation of
the little group and its components. The normal mode amplitude may concern a wave
of an additional displacement either of atoms or a group of atoms to the homogeneous
strain of the Bravais lattice. In molecular crystals Qf ; may describe a wave of twist of
molecular groups. The normal amplitude Qy; may also denote the wave of probability
of occupation of one of the equivalent states in a ¢rystal in which the number of sites in
the laftice for atoms of a given kind is in excess over the number of atoms. This also
concerns the case of different static orientations occurring in molecular crystals.

The normal mode amplitudes Qf ; are not independent variables. They are adjusted
in such a way that at a given value of external conditions i.e. temperature 7 and strain
SO the free energy F = F(T, S7, S5, ... S¢, {Oy,}) achieves a miaimum for a correct value
of 0% ;- Thus, the o ;7 s arc the solutions of the following set of equations for the extremum
of the free energy

oF

0
0Qx;
which allows one to express Oy, as a function of the normal strain Sy. The derivatives are

taken at the equilibrium configuration. Knowing. the amplitudes of the normal strains
one finds the normal stresses

=0, 3

0

C))

P = 75,

which keep the crystal in the deformed state.

Consider the phase transition from high to low symmetry phase accompanied by the
symmetry reduction from the space group G, to the space F, F,being a subgroup of G..
For the high symmetry phase let us choose all the normal strains and normal modes
amplitudes to be zero. Then, the frec energy expanded around the point SO = 0 and
Q,?j = 0 can be written in the torm

F = F(T, {0}, {0D+3 X c(S*+ X ¥ Unlk, )S0%;

a kj
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Depending on the physical meaning of the normal mode amplitude the diagonal coefficient
of the harmonic term 4,; may represent either the square of the energy of a phonon from
branch j and for the wave vector k, or an excess of the free energy produced by the proba-
bility occupation wave. The third order term of the normal mode amplitude has been
omitted because it vanishes for one-dimensional irreducible representation. Nevertheless,
this term may exist for some multidimensional representation, but then it leads to the first
order phase transition.

Each term of the free energy expansion formula should be invariant under the symmetry
elements of the crystal point group of the high symmetry phase. In consequence the expres-
sion of direct products of the irreducible representation of a normal strain I', and normal
mode I'y; created according to the form of a given term of the free energy expansion has
to contain the totally symmetric irreducible representation, otherwise it vanishes. In partic-
ular, the linear coupling term between the normal strain and normal mode vanishes pro-
vided I'y; is described by the non-zero wave vector k, since then the direct product I, @ I'y;
does not contain the totally symmetric irreducible representation. Similar discussion
for the K,4(k,j) term leads us to the common conclusion that

Uoz(ka J) . 5k,0 Ua(ka .])3 Kuﬁ(ka .]) i 5k,OKazﬁ(j)' (6)

This is a consequence of the translational invariance of a crystal lattice. So, in the case of
phase transitions accompanied by an enlargement of a unit cell terms U, (k, j) and K ,4(k, /)
are insignificant, and the phase transition cannot be of elastic type. Notice, however, that
some components of L (%, j, j') coefficients may always be present, namely those for which
I, transforms according to the totally symmetric irreducible representation.

- The reduction of symmetry in the high symmetry phase is produced by the active
normal modes which transform according to one irreducible representation .of the space
group G, therefore, the summation over & and j in (5) can be confined to k, — the arms
of the critical star and to j, — the components of the irreducible represeatation of the
relevant little group. For multidimensional representations further restrictions on the
summation over k. and j, can be imposed [7]. »

The normal strains and normal amplitudes which occur in expansioa (5) may be
treated as either fluctuations in the high symmetry phase or a sum of a new equilibrium
state of a low symmetry phase described by S, and Qy;, and fluctuations s, and g;around
that equilibrium state S, and Q;. Accepting the last, we insert into (5) S, = S,+s, and
o ; = Ou;+qx; and rearrange the expansion of the free energy with the aid of the familiar
procedure of completing the square. In result, one finds

F = F(T5 {Su}, {chjc})+ Z pasrx—l'% Z l:caad,ﬂ+/z c“ﬁ?S'}’v
3 af b

o Z : Z Eﬁ o (ke ks 0 0
+ . 5kc,‘0Kaﬁ(Jc)chjc . : Na(kca ]c)M (] J-/ > Nﬂ(kcs Jc):l S45g
jc kcjc kc,jc,
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1 kc k:: 1
+5 R Py ojctkejo T6 CapySaSpSy
[ [

ijC kc,jc, 'zﬂ’y
+% Z Z 5kc,0Ka[}(j,;)515/;ch'jc+% Z N Z La(kcﬂ jcﬂjé)Sanchq—kcjc"l' rersy (7)
aff  Je ’ a kejcic’
where
Nk, j) = 5k,OUa(j)+5k,0 ; Ka/}(j)sp+ Z L,(k, j, jl)ij’ (8)
g
k k'\ o 7 ;
R (j j,> — [l T Lol J, 1)S.10(k+ )
k kK ki k '
+3 Z B ( S .2> Ok, 01, j, 0k + K + ki + ky) )
J J J1 J2
kiks
JiJ2
and
z k K a0
Ty = qpj~+ ZM<] j/>Noc(k5.] )S4s (10)
o kj
and

k &\ (K K
M g ot R g 1734 =S 5 (H5-'n. 11
Z .(] ]) <] ]) kK'Y, ( )
%5

J
The zeroth term F(T, 51, S5, ... Se; {Qk.j.)) corresponds to the free energy of the new
low symmetry phase, p, is the stress component acting on the new phase. Some insignificant
terms have been neglected.
The equilibrium values of the normal deformation S, and the active normal mode
Oy ;. which arise in the low symmetry phase as a result of the symmetry reduction can be
found from equilibrium equations (3) and (4) which now take the form

PatCSy+ Y O, 0UalJe)Qx.j. + ; Y 040, 0Kup(J )i Ss+5 2. CopySpS,
Je By

kcjc
+3 3 Likojo/00uiQ-rue =0 for a=102 .6, (12)
chcic
Z Ul j)Sat3 E Ores0Kap(J)SuSy+ E {% Pkcjﬁjc,jc’
3 af ke'je! -
. s ’ 1 »kc kc’:
+ Lz(kc, Jes Jc)Sa a(kc -+ kc) +5 R j j/ ch’jo’ = 0. (13)

To find the effective elastic constants ¢;; in the Voigh notation one takes the second deriva-
tive of the free energy with respect to the normal strain and with the help of the eigen-



188
vectors oy(x) (1) transforms it into the form

- . - 0°F
Cig = g}:o-i(a)caﬁo-l(ﬁ): Cop = 5_S,,6sﬁ .

(14)
From (7), one finds

Cu = cy+t Z Ok, 0Ku(j )i+ 2. CunVi
B

Je

N " kc ké r .
i Z Z Ni(kcﬂ.]c)M (J jr )Nl(kc9.]c)3 (15)

koo koo
where

Ni(kcs ]c) = z ai(a)N(z(kc’ jc)’ A (16)

-4

and

Vo= Y 0,(®)S, (17)
are those components of the strain tensor which result from the symmetry reduction at
the phase transition point. The strains and the normal mode amplitudes appearing in
(15) should be found from the equilibrium equations (12) and (13).

3. Equi—translationaf non-elastic phase transitions

Consider the equi-translational phase transition induced by one-dimensional irreduc-
ible representation I'y ;.. Let the normal strain be represented by the irreducible representa-
tion I',. The star of k, = 0O consists of one wave vector only. Let us establish the vanishing
components of U,(j,), L0, j., j.), and K,4(j.). () If I'y;_ and I' arenot the same, component
U,(j.) = 0. (@) If I', is not the totally symmetric representation, component L0, j, j.) = 0.
(#ii) If the direct product I', ® I'y does not include I’ jor Kyp(Jo) == 0. In particular, if I', is
the totally symmetric irreducible representation, components K, (j.) = 0. (iv) Also, if I',
is a totally symmetric irreducible representation and I'y;_ is not the same as any of I',,

z szﬁ(jc)Sﬁ = 0.
B

The phase transition can be called mnon-elastic if all the components U,(j,)
(x = 1,2, ..., 6) vanish. Then, equilibrium equations (12) decouple into two subsystems.
Owing to statement (iv) for the I', which correspond to the totally symmetric representa-
tion, we have f

cuSoz+%La(0’jc’ jc)Q(z)jc = 0, (18)
and for I', not being the totally symmetric representation

CaSa+Q0jc 2 szﬂ(jc)Sﬂ = 0 (19)
B
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We have assumed p, = 0 and neglected the square term in strain. From (19) and from
statement (ii7), we conclude that in the low symmetry phase the static deformation com-
ponents S,, which transform according to any other than totally symmetric representation,
remain zero. Hence

ZﬂKaﬁ(jc)SaSﬁ =0, (20)

the remaining equilibrium equation (13) is then

a “Hc 0
{/’I'Ojc—!— Z L0, je, Jc)Sa+l§' B(] ) Qo?}c} onc = 0. @1

As usual, we assume the expansion coefficients to be temperature independent except
for Ag;(T) which is a linear function of temperature. The critical temperature 7, for the
normal mode subsystem is defined by 44, (T,) = 0. The amplitude of the normal active
mode Qp;_ and totally symmetric normal strain S, can be obtained as a solution of equations

(18) and (21). Then, in the region where 4q; > 0, say above T, we have Qgj, =S, =0
and
R, jo» T) = 40;(T) > 0, (22)

where R(O0,j,, T) stands for the temperature dependence of R((]) 0,)(9). In the region

[ c

below T,, where o; (T) < 0, we have
0 z -1y1/2
QO.ic = =+ {6/10];:(7’) [B <] ) =8 ' ca_lLa(Oajcajc)] } ~ 'T_Tcll/za

Saz o _% C;IL“(O,]'C,]‘C)Q(Z)J-C e iT—Tcla

and

and

R(O’ jc’ T) = “ZEAOjc(T)'*' z La(oa jc,jc)Soc(T)] > 0. (23)

One also finds that ) L,(0,j., /)S, is always negative. The function R(0, j., T ) is equal

to zero at T, and remains positive above and below the critical point. Tt is at lsast twice
steeper below than above the critical point.

Basing on formula (15) the effectivz elastic constants can easily be calculated in the
following manner. First the symmetry tensor L0, j.,j.) and K;(j,) have to be found for
a given active irreducible representation I'y; . To do this we expand point group G of the
high symmetry phase over subgroup F being the point group of the low symmetry phase
i.e. G = ) g,F, where g, is a generating symmetry element in which g, is the identity opera-

h

tion. The active irreducible representation I'y; becomes the totally symmetric represen-
tation in F and consequently its characters in F are all + 1. The symmetric tensor of second
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TABLE I
Tensors of elastic constants in a vicinity of equi-translational non-elastic phase transitions induced by

one-dimensional irreducible representations
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TABLE 1 (continued)

G Toj. F

3Im Ay, 32

AZu 3m

§/m B; 3
6 A7 3
6 B 3

§/ mmm By 3m

6m2 Ay 32
6mm B, 3m
622 B, 32
6/mmm By, 3m
6nm2 A 3m
6mm B, 3m
622 B, 32

6/mmm Ay 622
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B,, 62m
62m As 6
6mm A, 6
622 A 6
6/m A, 6
B, 6
m3m Ay, 432
Azg m3
A2u Z3m
432 A, 23
:?13m A, 23
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LY, j,, j.) and fourth K(j,) rangs for the subgroup F (and totally symmetric representa-
tion in F) are tabulated in [4] in Voigh notation. Their symmetries which arise under the
operation g, can be ound by means of the usual transformation matrices P;(g,) and Pg(g,).
Now, according to the form of the terms L0, j.,j.) V;035;. and Ky(j.)ViV,Qo;. in (5) the
symmetries of these tensors come out as a result of averaging over the cosets g, F with an
apropriate factor made up from character yo;(g,) of the representation I'g;_ in G. Thus

L(O’ jc! .]c) = Zh: ngc(gh)PL(gh)L(F)(Oa jcs jc):
K(©,j..j.) = ;XOjC(gh)Pg(gh)K(F)(jc)PK(gh)- ‘ (24)

Taking advaniages of (15), (16) and (8) we find the effective elastic constants in vicinity
of all equi-translational non-elastic phase transitions induced by one-dimensional irreduc-
ible representations. In Table I are quoted the tensors of the elastic constants, the point
group G of the high symmetry phase, the associated irreducible representation of the active
normal mode of the high symmetry group, and the point group F of the low symmetry
phase [6]. Abbreviations are listed in Table I1. The tensors of the elastic constants are written
in conventional coordinate systems with respect to the high symmetry phase. They also

TABLE II

Summary of abbreviations

R = R(O:jc, T) L; = Li(O;jcgjc)

0 = Qoj, Ky = Kulje)
= Cll_LiQ2R71 H = C55-L§Q2R_1
= C1z_LiQ2R-1 I = c¢s—L;L;Q*R™

= c33—LZQ*R™! J = cas—LLsQ°R
= ¢y3—LiLsR™ M = c3s—L3LsQ*R*
i =Ki0Q
=.¢1,—L; L, Q°R™ J =Kis0
I = K14Q

agree with the conventional coordinate systems of the arising low symmetry phase, one
exception being the tensor of low symmetry phase with a point group 3m, 3m, 3m, 32
which arise from 6/mmm, 6m2, 6mm, 622 by B,,, A,', B, and B, irreducible representation,
respectively, and is turned around axis z by 30° with respect to the triclinic conventional
system. The elements of the tensor written in the conventional form c44, ¢14 and so on,
do not vary across the phase transition point provided the phase transition is of second
order. Also the difference c;,—c;, remains constant in all non-elastic phase transitions, the
exception being the phase transitions from 2/m to either 2 or m point groups. The tempera-
ture dependence of the elastic constants in the frame of the phenomenological theory can
be estimated with the assumption that only Q,; (T) and R(0, j,, T) are temperature depen-

ent. In resuit the elastic constants of type i, j, and / are proportional to the temperature
dependence of the order parameter. The elastic constants of type from 4 to M may exhibit
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a discontinuity at 7., since Q3; and R(0,j,, T) have the same temperature dependence
below T,. Such elastic constants are related to the totally symmetric straia or, ia other
words, to dilatation of the crystal and, as it will be shown below, they are sensitive to the
critical fluctuations of the active normal mode. In consequence, they show a remarkable
critical behaviour in vicinity of T,. This effect may lead to the first order phase transition.
The elastic constants listed in Table I are not corrected for the discontinuous volume
change associated with the first order phase transition.

The special properties of the elastic constants of the type from A4 to M are due to the
coupling constant L0, j,, j.) between the square of the normal mode amplitude and the
elastic strain. In a special case, however, when the critical temperature does not change
under the deformation of the crystal i.e. dT,/dV; = 0, we have L(0, j,,j.) = 0. This is
established as follows. Suppose the crystal in the high symmetry phase, where Q,;. = 0,
is deformed by ap amount 4S,. In the deformed state critical temperature T, is defined by

R(O 0 T, d) = 0. Expanding 1o, (7) around T,, we get the critical temperature for the

jc Je
T, =1 ' 0ic 1 L (0 ) )55 (25)
4 - c dT o ’Jca.]c o

deformed state

where o runs over the totally symmetric irreducible representations only. Since diy; /dT # 0
(usual positive), we find Ty = T, if L0, j,, ) = 0. Concluding, the critical temperature
does not change under homogeneous strain if the coefficients L,(0, j., j.) are equal zzro.
In this special case, a dilatation caused by a hydrostatic pressure does not influence the
critical temperature. It is, however, essential to note that normal strain S, of a shear
strain type has always little influence on the value of Ty, since the L,(0, j.. j.) for I, which
is not the totally symmetric irreducible representation, vanishes by symmetry.

If the high symmetry phase is a one domain phase, the low symmetry phasz consists
of two types of domains characterized by -+ Q,;_ and — Qo ;.. Therefore, these elastic con-
stants which are proportional to Q,;_, will be different in those domains.

4. Renormalization group approach

The phenomenological theory does not take into account the critical fluctuations.
Some elastic constants show, however, a critical behaviour close to the phase transition
point, others are not sensitive to that. To study these relations we derive the renormaliza-
tion group equations for all relevant coupling conscants. It will be assumed that the in-
trinsic critical behaviour occurs in the active normal mode subsystem, then the critical
behaviour of the elastic constants will be a result of their interaction with the active normal
mode. We confine our discussion to the high symmetry phase only.

The local free energy density can be written in a form similar to free energy expan-
sion (5). As usual, the gradient term of the active normal mode amplitude is added. In
the free energy deasity only those terms are left which describe the active normal mode j,
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and this permits us to suppress index j,. In the hydrodynamic limit the wave-vector depen-
dence of the expansion coefficients is disregarded.

F = Fot3 ¥ 0 +k)01+3 T e T 5.5~ )

+3 Y L, Z Sa(k1)51k2‘1-k1—k2+%zp K, kz;, Sul(k1)sp(k2)q — g, —,
o o, 1K2

kik>
+’2% B Z leqkzqk:ﬂ—lq—kz‘ks’ (26)
kikaks -
where s,(k) and ¢, specify the fluctuations in the system.
Using the Wilson-type approach we can construct a renormalization-group transforma-
tion by integrating over intermediate wave vectors in the domain 5~ < k < 1 and making
an appropriate change of scale

k=b""%, q.="{4

su(k) = {5, (K). @7)

The equations have been constructed by making a diagramatic expansions in the analogous
to the renormalization group used by Bergman and Halperin [9]. Taking into account
‘the diagrams up to the second order, we get the following recursion relation for A and the
normal elastic constant ¢,

p - : 1 7
A +k? = (3b d[ll+k2+%BlT: :1+p2:|,

p

| 1
b1 pzp=a| ety i L (28
i [C“ by Z(az+p2)(zl+(k+p>2)] WG

where |p| and |k+p]| are restricted to lie between b~ and 1. Ths scale factors should
satisfy (2679"* = 1 and {2b™% = 1. This choice ensure that the wave vector k2 in the first
equation of (28) disappears and that the elastic constants are not renormalized, provided
L =0.

Similarly, we can derive recursion relations for the remaining coefficients and convert
them into the form of differential equations. In the second order of the perturbation theory,
we find B

dj N

L~ 24+1 TB—, 29

ar =R i
e B IR A VT (30)
dbe _ (. 4 i) 3
di 21 jingal it (7 )2

i N

o gz - (31)
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dK d
= (1= — K, 32
di ( 2> e (32)
dB
— =(4~d)B—-3TB* —, 33
dl (4—d)B—3 (A+1)? (33)

where N(2n)* is the surface area of the unit sphere in d dimensions. We notice that for
d = 3 cosfficients L, do behave critizally, provided their bare values do not vanish by
symmetry whereas coefficients K,; become irrelevant at 7,. From (31) it is possible to find
the physical values of the elastic constants. Their temperature dependence can be esti-
mated as

Ty (34)

I=In \ &

1
ca(t) = &y

where t = (T—T,)/T,, &(T) is the correlation length at temperature T close to T, and &,
is the value of that length at A = 1, far from 7. It is clear now, that unless L, = 0, c. is
a monotonic decreasing function of / which may lead to the negative value of ¢! even
though ¢ is positive.

TABLE 11

The normal elastic constants ca"associated with the totally symmetric irreducible representation of the
normal strain

Point groups G Cx
2/m, m, 2 €11C12€13C15)
det €12€22C23C25
013523C§3035
C15C25C35Css
222, mm2, mmm €11€12C13
det (C12C‘22023>
C13C23C33
4, 4, 4m, 4mm, 422, (cri+e12)ess—2c?,
42m, 4/mmm
3, 3, 32, 3m, 3m
6, 6, 6/m, 622, 6mm,

6ni2, 6/mmm

23, m3, 432, 43m, c1i+2¢12
m3m

As a consequence, the system may become macroscopically unstable due to the
fluctuations of the normal strains s, which belong to the totally symmetric irreducible
representation of the point group of the crystal and therefore represent a dilatation or
“breathing” mode. Such instability in dilatation may lead to the first order phase transi-
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tion with a finite change in volume. The normal elastic constants ¢, which belong to the
totally symmetric irreducible representation of a given point group and which exhibit
the critical behaviour as described by (34), are listed in Table III.
Let us write equation (31) for the elastic constants in Voigh notation
dcik

—TLL, ——— ,
dl TR )2 (35)

where we have used (14) and introduced L; = Y 0(x)L,. We see that some elastic constants

-1

decrease when the temperature approaches its critical value according to the experi-
mental observations [3]. In Table I all the elastic constants which may show critical behav-
iour are marked with capital ietters.

The author is grateful to N. M. Plakida and V. L. Aksyenov for helpful discussions.
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