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A new model is proposed. This model assumes the ion-ion .interaction to be purely
central and expresses the ion-ion coupling through the first and second derivatives of the
potential. An equilibrium criterion, considering the volume dependent energies of ions
and electrons, makes the model quite sound in its applicability. The volume-term due to
Sharma—Joshi is modified to include the factors like G2 and K 2e(g). The latter factor account
for the exchange and correlation effects of conduction electrons in their screening-action
and the former factor includes the Umklapp processes, which essentially control the sym-
metry of the lattice. The model thus developed reproduces the phonon-dispersion in
bee zirconium quite successfully.

1. Introduction

A large number of theoretical studies [1-7] employing Sharma-Joshi model [8] have
been reported in the recent past. All of these studies use non-central forces to couple
the neighbouring ions. The validity of angular part of these forces is doubtful and unjusti-
fiable. Moreover these studies assume the lattice at equilibrium under the ionic energy
only. Actually the crystal comprises of ions and electrons and their energies altogether
should be considered while arriving it the proper equilibrium condition. Further, the
electron-ion expression due to Sharma-—Joshi needs some modifications: (a) a proper
inference factor G2 depending on the actual shape of the atomic polyhedron. Dayal and
Srivastava [9] have pointed out the importance of this factor. Further the results on phonon-
-dispersion have beea greatly improved (Goel et al. [10, 11], Ramamurthy and Neelkan-
dan [12]) by using the correct form of the factor G2, and (b) a screening parameter prop-
erly modified for the exchange and corrclation effects of the conduction electrons.

Present communication expresses the ionic coupling between the first and second
neighbours in terms of the first and second derivatives of the pair potentials coupling them.
A proper equilibrium condition, envolving the volume dependent energy of ions and
electrons, have been derived and it has been shown that the Cauchy’s discrepancy in S-zir-
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conium is sufficiently explained for the crystal under.equilibrium. The Sharma-Joshi
volume term is adequately modifizd to include the correct inference and screening factors.
The model in its reported torm reproduces the dispersion relations in body centered
zirconivm quite successfully. An independent stimuli for this study is provided by the
availability of the experimental phonon-energies on bee zirconium [13} quite recently.

2. Formalism

The u-ual secular determinant for dispersion frequencies (v) along the principal
symmetry directions [_C, 0,61, 14,4, Gl [é, {,{] may be written as

ID(q)—4n*mv’I| = 0, 6))

where m is the mass of the ion and [ is the unit matrix of the order 3. The dynamical matrix
D(3) may be expressed as the sum of two parts, one due to ion-ion coupling D,,(q) and
other due to eleciron-ion coupiing Dfﬁ@)r. The former may conveniently be expressed within
the central pair potential scheme [14] as

DLA) = & (B1+20)) (1— C,CsCy) +4B,S2+(1— Cp— C )2,
D;ﬂ(a) = —S-(OCI—BI)S Sﬁcys (2]

where C, = cos (% Zan C,, = cos(ag,) and S, = sin (}aq,), q, is the a-component of the
phonon-wave vector q, and
1 [ow ?w
ai=_a_9 ﬁi=——~ ]=132 (3)
7

w is the pairwise potential coupling the ions.
‘The electron-ion coupling term due to Sharma-Joshi [8] may be written as

Dfﬁ(a) = qaqﬂKergy (4)

where Q is the atomic volume, K, is the bulk modu'us of the electron gas and G2 is the

inference factor evaluated over the Wigner—Seitz sphere.
In place of usual G2 factor we have used the correct form of the factor which can be

obtained by evaluating the following 1nteg1a1 over the actual atomic polyhectron of the
cubic metal.

1 X o
= Ez—fexp (ig - r)dx. (5)
@

The resultlng expressions along the symmetry directions have been reported by
Ramamurthy [15]. These relations are exploited in the present study. The screening effect
due to conduction electrons is accounted for by introducing a factor K2 &(q). The modified
form of equation (4) may now be written as

. K% : i St
Dfp(‘l) = qaqﬁKeGZQ 7 S(Q)a (6)
Al o
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where K, is the screening parameter, which has been evaluated in the Bohm-Pine [16]
limit uwsing the following expression

r 1/2
K, = 0.353( : ) Kp, ' )

o

where 7y, is the separation between the electrons and a, is the Bohr radius, Ky — the Fermi-
-surface wave vector, may be expressed as

3n?z\!/3
R ()" 3

The dielectric function &(g) in Habbard [16] and Sham [17] formulations, is given as
e(@) = [1—f(@)]e(@), ©)

where Hartree dielectric function ey(g) is expressed as

2Kem? (. 4KE—q®> |2Kp+gq
= — In|- ; 10
() nh?q? N 4Kpq 2Kp—q (10)
and the factor f(g) needed for exchange and correlation correction is written as
2
@ =t (1)
(9" + K+ K)
where
K? = 2Ky/na,. (12)

For considering the equilibrium of the lattice, the volume derivative of total energy
Er should vanish, i.e.

OEL/0Q = 0, (13)
where Ey may be written as the sum of that due to ions (£ and electrons (E,), i.e.
E; = E(+E.. 14
The volume derivative of Ey can be casily expressed in terms of «;

i

Q2

: 22
= (a; +a,) — for bee. (15)
a

The electron-energy E, comprises of fermi (), exchange (E,) and correlation parts (E,).
The fermi and exchange parts may be expressed as

221 0.916
R e (16)
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The correlation (E,) part has been the subject of various studies on dielectric screening.
Recently Agrawal and the present author [18] have analysed all these expressions. From
this study [18] it could be inferred that for the electron separation 4 for f-Zr the most
suitable schemes for electron correlation are those due to Gellmann and Brueckner [19],
DuBois [20] Tiogo and Woodruff [21] Singwi et al. [22] and Mandal et al. [23]. For the
purpose of the present study the latter three schemes [21, 22, 23] give the identical results
on electron pressure (Pg), which can be expressed as

O, P (N
69 N e /

The scheme due to Mandal et al. [23], which seems to be most appropriate and is
used here, expresses E, as

4 [
E.=—— J‘ Y(rs)drs’ (18)
nor,
[¢]

where a = (4/9m)1/3 and the value of Y{(r,) at r, = 4 equals 0.5386. The required equilib-
rium condition assumes the form

oy o, = %Pe. (19)

3. Calculations and results

The model reported here uses five disposable parameters (ay, &y, f1, B2, aK,). The
three of them are evaluated using elastic relations. These elastic relations are obtained
by comparing Eq. (1) in locng wave length limit with the Christoffel [24] relation of elasticity.
The relations thus obtained are

aC11 = 2/3(20{1 +ﬂ1)+2ﬁ2+aKe,
aclz = 2/3([31"‘4“1)""2“2'{"“1{6,
aCuy = 2/3Q20t; + By) + 20, (20)

The fourth model parameter is evaluated using equation (19) and the last model
parameter is obtained by the knowledge of a zone boundary frequency (vy) at the point
(1, 0, 0). The relation vsed in the follcwing:

n2mvi = 4320, + B1)- (1)

The input data and the calculated model parameters for bee zirconium are shown
in Table I. The calculated dispersion curves for the said metal are shown in Fig. 1. To
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TABLE I

Input data and calculated model parameters for f-zirconium

Calculated model parameters
Input data References (10* dyne/em)
Ci; = 0.783 x 10'2 dyne/km? oy = 0.2773
C;i» = 0.503 X 10'? dyne/km? [25] o, = —0.3474
Cia = 0.290 % 1012 dyne/km? B = 2.07103
a=23.64A | f2 = 0.3024
m = 91.22 amu
z=4 [26] aK, = 0.4949
vy = 4.84 THZ ! [131
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Fig. 1

compare our results, we have plotted the experimental phonon frequencies alongside
our curves. These experimental phcnon frequencies are calculated from the recently
published data on phonon-energy [13] for S-zirconium.

4. Conclusions

From equations (19) and (20) it is evident that Cauchy’s discrepancy for the metal
is given by

C12—C44 = Ke_2Pe' (22)
Our analysis (18) reveals that for r, = 4 negative value for P, and positive value

for K, is obtained what clearly explains the positivity of Cauchy’s discrepancy in general.
The exact magnitude of the discrepancy is yielded by considering effective valency of the
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metal. Further, the negative value of P, speaks about the cohession in metal. Tt is thus
obvious that our equilibrium-criterion sufficiently explain Cauchy’s discrepancy and
cohesion in metal on one hand and makes the model consistent with the experimental
findings of Cy,, Cy,, C4, and vy on the other.

The inclusion of the factor G2 and KZe(g) has improved our results a lot. Tt is thus
obvious that the proper inference factor and the dielectric screening effectively control
the volume coupling between electron and ion. The medel, in its simple form, explains
the phonon dispersion in a complex metal like B-zirconium, with a reasonable degree
of success.
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