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A REAL-SPACE RENORMALIZATION GROUP METHOD
FOR CONTINUOUS-VARIABLE ISING MODEL. I*
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A new effective continuous-variable Hamiltonian for the Ising model is introduced.
A real-space renormalization group method, for systems described by this effective Hamilto-
nian, is presented and some approximations are considered.

1. Introduction

The application of renormalization transformation concepts [1] to critical phenomena
of spin lattice systems has been achieved by means of the so-called real-space renormaliza-
tion group (RSRG) methods, first introduced by Niemeijer and van Leeuwen [2, 3]. The
most important advantages of these methods consist in their validity in any real lattice
dimension d, and their ability to evaluate not only critical exponents, but also other quanti-
ties of interest such as critical temperature, thermodynamic functions, and scaling functions.
Among the various RSRG approaches, the decimation transformation is conceptually
the simplest one [4-9]. However, the use of this transformation in the study of systems
exhibiting critical behaviour encounters a difficulty. It lies in that a non-trivial fixed point
can be reached only if d—2+#n = 0, where # is the critical exponent characterizing the
behaviour of the two-point correlation function at the critical point. In general, this condi-
tion is not satisfied and the decimation transformation cannot give the correct value of
11, although it is useful for calculating the critical exponent v characterizing the critical
behaviour of the correlation length [7, 9]. To overcome the above mentioned difficulty,
the decimation transformation has been modifizd by employing a linear weight factor,
which involves an adjustable parameter p [6, 10]. Then, the restriction d—2+# = 0 was
removed by a suitable choice of p (see also [11]). .

The application of RSRG approaches has largely been confined to Ising systems
described by discrete spin variables. In this paper, we present a renormalization group
approach to Ising systems with continuous variables defined on a lattice. Our method
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consists of two steps. The first one is the pure decimation transformation in the integral
form, and the second one is the variable rescaling, determined by the transformation of
the two-point correlation function. Such a rescaling of the variables enables us to avoid
the difficulty arising from the calculation of the critical index 5. We also present a procedure
for computing 7, and introduce an approximate calculation technique based on the cumu-
lant expansion involving a non-Gaussian distribution. '

2. The renormalization group transformation

The partition function of the discrete-spin Ising Hamiltonian on a lattice can be written
in integral form using the so called classical effective Hamiltonian, expressed in terms
of continuous lattice variables [12, 13].

In this paper, we consider in nearest neighbour approximation the discrete spin-S
Ising systems in zero magnetic field: These systems can be described by the following
continuous-variable effective Hamiltonian on a lattice with N sites

N N '
Hix}=a, Y x}—a; Y xi+... + 2K Y %, 2.1
i=1 i=1 t

set

with each x; varying from —oco to +oco. Here, K, denotes the coupling constant of a parti-
cular interaction type, s is a subset of lattice sites, the s summation runs over all interac-

m .
tion terms of a particular type, and x,is defined as x, = || x{» with /, being natural numbers
n=1
(ines).
n :

such that the sum Y /, is an even natural number. For example, confining ourselves to the
n=1
nearest neighbour (n.n.) and next nearest neighbour (n.n.n.) effective pair interactions,

we have

YEY % =K1 3, XX+Kaun ) (xisxj+xix§)+K2,1,3<z XZxT+ ..
t

Set [¢H ) iy i,jy

+Kya1 Y xiX;+Ka 50 D (x3x;+xxD+ K03 ), XIXT+ o (2.2)
@,J) (O9)) @.J)
where the parameters K, ;, ,, K >, , stand for the n.n. and n.n.n. interactions, respectively,
and the symbols <7, j> and (i, j) denote that the summations are over the n.n. and n.n.n.
pairs of lattice sites. The Hamiltonian (2.1) can be derived exactly (see Appendix). It
should be noted, that the classical effective Hamiltonians derived in [12, 13] differ from
that introduced by us.

In defining the renormalization group transformation for our continuous-variable
Ising model, we take advantage of the decimation transformation. It consists in an inte-
gration over lattice variables x; belonging to a set &, such that the remaining variables
y; = x;, which are elements of the complementary set &, form a new lattice, isomorphic
to the original lattice. Then, the partition function remains the same, and the original
Hamiltonian H{x;} is transformed into the new Hamiltonian H'{y;}. It can be easily veri-
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fied, that H'{y;} has the same symmetry as H{x;}. The decimation transformation of the
two-point correlation function I" leads to the relation [5, 6]

I'(r;K) = I'(r/b; K", 2.3)

where r is the distance between two lattice sites, & denotes the length réscaling factor
K and K’ symbolize parameters of H{x;} and H'{y;}, respectively. From relation (2.3),
it follows that, if the decimation transformation were performed exactly, a non-trivial
fixed point could exist, if and only if, the condition d—2+4#5 = 0 were satisfied [5, 6].
It is obvious that this condition is not, in general, fulfilled. We remove the above difficulty
by rescaling the variables y; as follows (cf. [1])

yi—> b7 24

Then, our renormalization group transformation consists of two steps. The decimation
transformation 1s the first one and the variable rescaling (2.4) the second one. These two
steps can be put together by writing

+ o0

E+H (3} _ (

e 1_;:_ 1, 2.5)

2yi*

dx; TT [8(xi—y)]et)
i ie Sy

— yi—b

where E is a constant independent of y;. Since the Hamiltonians H{x;} and H'{y;} are
parametrized by the sets of coefficients K = {a,, a5, ..., K;} and K’ = {a}, a3, ..., K/},
onc can view Eq. (2.5) as a mapping in parameter space

K = ZK. (2.6)

According to (2.5), the transformation relation for the two-point correlation function
becomes

I'(r; K) = b~%*2""4(rjb; K'). 2.7
In order to find the fixed point K*, we need to determine first the critical exponent #.

This can be done as follows. We specify the distance r in (2.7) putting, e.g., r = b’ with
' being the nearest neighbour distance in the new lattice. Then, at the fixed point, we have

I(b8'; K*) = b~4+2711(8'; K*). (2.8)
It is easy to check that this relation can be written in the form
] 17
—b21 InZ* =0, 2.9
<6K§‘,2,1 | aK;“,l,l) e

where Z* is the partition function at the critical point. On calculating Z* in some approxi-
mation, one can use (2.9) to express # as a function of the parameters of the critical Hamil-
tonian. Thus, we can write formally th. exponent # as

1 = n(K*). (2.10)

Now, inserting (2.10) into the recursion relations (2.6) one can find the fixed point K*,
and, subsequently, using once again (2.10) the exponent 5 can be evaluated. Other critical
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indices can be calculated by standard methods [3]. It is to be noted, that in an exact calcula-
tion, 5 should be independent of K* [6]. Thus, a legitimate approximation should yield
n(K*) to be approximately constant. 4

It should be pointed out, that in the investigation of the critical behaviour of the
continuous-variable Ising systems described by the Hamiltonian (2.1) also other RSRG
approaches can be applied. For example, we may use the one-hypercube approxima-
tion [14].

3. Approximations

In general, the renormalization group transformation (2.5) cannot be performed
exactly, and certain approximations are necessary for ‘obtaining the recursion relations.
Here, we utilize the cumulant approximation [3]. Splitting the Hamiltonian H{x;} into
a zeroth part Hy{x;} and a perturbational part V{x;}

H{x;} = Ho{x}+V{x:}, (3.1)
we can write the transformation relation (2.5) in this approximation as
E+H'{y}} = V{xPo+3 W} =V xdo) Dot oo (3.2)
where the average <...»o is decfined by
| (Ao = T4/, (3.3)
with
In=( +§: H dx; iel; [3(xi— y) 1" exp Ho{xi}i~v1- 5= 3o (3.4)

It should be noticed, that the cumnulant expansion (3.2) is well justified when V{x;} may
be treated as small in comparison to Ho{x;}. This restriction of the applicability of the
cumulant approximation corresponds to the case of small coupling .constants in V{x;}.
We take the zeroth part of H{x;} in the form

Ho{x;} = a; ), XP—a, > i (3.5)
with @, assumed to be positive. We mnote, that Ho{x;} cannot be adopted in the

Gaussian form when @, > 0. To evaluate the cumulants in (3.2), we must know the ave-
rages :

Mo =Ljl,, n=2,4,6,.., (3.6)
with
~ 2l e 2y
I,=a, % [ dxx"e® ™", 3.7

where g = a,/2 N/ a,. The moments I, can be represented as (cf. [15])

“lagt [n+1 n+1 n+3 n+3
I,=a, 4 [%F< 7 >1F1< g =%§32> +F<T)g1F1(T= %2g2>]’ (3.8)
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where Fi(o, B; z) denotes the confluent hypergeometric function
o z a(a+1) z*

— —+ — +

B 11 Bp+1) 2!
According to (3.8) and (3.9), each moment J, can be expressed as a convergent power

series in g. The convergence of these series is rapid for small » and slow for large n. Dividing
cach I, by I,, one can write each average {x"), as a convergent power series in g

x"y = Y biVg". (3.10)
: k

I, Bsz) = 1+ (3.9)

For the calculational purposes, it is convenient to carry out the summation of (3.10).
This can be realized by the Padé-Borel-Leroy method of summation [16]. The cumulant
expansion based on the separation (3.1) determined by (3.5) and the above procedure
of calculating the averages (x">, can also be used in computing Z*. The details of the
calculations and the results will be presented elsewhere.

The author wishes to thank Docent Dr. habil. J. Szaniecki for helpful discussions.

APPENDIX

The continuous-variable Ising Hamiltonian used in this paper can be derived as
follows. We start from the spin-} Ising Hamiltonian

H=~-J Y o0 (A1)
()

where the sum runs over nearest neighbour pairs of lattice sites, and the spin variables o;
take on the values —1 and +1. We express the spin variables in terms of Bose operators

ai> a.il-
g; = _1+2a.{ai, (AZ)
[ai, ajl;] - 5i,j‘ (A3)
Then, the partition function is
Z = ) {m}| exp H({al}, {a:})PI{n:}, (A4)

{ni}
H({al},{a}) = K ¥ (=1+2afa)(—142d%a;), K = J/ksT,
<Ly (A3)
where [{n;}> denotes the normalized boson states

l{ni}> = 1—[ Ini> = H [(ni!);llz(a;r)niloi>]’ ni = 09 1’ 23 cesy OO, (A6)

and
P'=[1(P?+P)), (A7)
i
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with P} and P} being the projection operators defined by
P?l"j) = 0;,;0n 00,5 (A8)
Pillnj> = 5i,j5nj,1illi>' (A9)

The operator P eliminates the reduntant contributions to (A4) with n; = 2, 3, ..., o0.
‘Now, using the coherent state formalism, see e.g. [17], we can rewrite (A4) in the form

Z = [ du({eu}) {eu}l exp H{al}, {aDP{e}> = § du({o}) exp H{oi}, {o:}), (A10)

I I d*a; :
where du({o;}) = ,and the coherent states |{o }> are given by
T

i

[{ou}> = H |°‘i> = H [exp (=3 |et;]*) exp (“iaD 10;>]. (A11D)

Equation (A10) defines the Hamiltonian H({a}}, {«;}), which is the coherent state repre-
sentation of H({al}, {a;}}):

H({o}, {)) = In ({o}] exp H({al}, {a:)Pl{a}>- (A12)

This effective Hamiltonian is a function of the continuous complex variables o;. Inserting
(A5) into (A12), using the formulae

el (—1+2atayPHo}> = T[[A+a) exp (=[], 7 =10,2,4,...,  (A13)

e}l (~1+2a8a,)"Pl{o}y = —

H[(Hla > exp (~ll®)], n=1,3,5,.

1+| | j
(A14)
and performing a cumulant expansion of the average in (A12), we arrive at
B}, {}) = Eo— Y o+ ¥ In (L +lol?) +¢4 <Z fify
i i i.7y
+c2 Zf1f1+c(2) Z flf_, ceoy (A].S)
i BRCY )
with
f = — 1+ ol (AL6)
P )
E, = 1 Nzcosh K, (A17)
Ny

1
¢ = E a,‘,,l)’—n—‘u'", (A18)
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(A19)

(A20)

(A21)

where z is the number of nearest neighbours, the parameters ¢, and ¢7”’ are the n.n. con-
stant couplings, and ¢, is the n.n.n. constant coupling. The coefficients al}’, ¢! and
all® are numbers dcpendent on the lattice symmetry. Inserting (A15) into the second

equality of (A10) and substituting «; — exp (3x;+ip;) (0 < ¢; < 27) we have

Z = e TO I dxe o0
13 4

where
A{x} = Y x— Y e+ YIn(l+e+e, ¥ g,
: . i sy
+ey Y gigi+e? Y gl + .,
Gh &h
with
gi = tgh 17 xi.

The partition function (A22) can be rewritten as follows

" T - - +00 AY
7= eEo j‘ n dx,- % (eH{xi}+eH{—xi}) = eEo j‘ n dxieH{xi}.
- i —ow i

Finally, from (A25), (A23) and (A24) we obtain
E, = Ey—N(1—1n2),

(A22)

(A23)

(A24)

(A25)

(A26)

H{x;} = a, inz_azzx?"'Kz,l,l <Z> xx;+ Kz ¥ XX+ Ky s Y XX+ ..
i i isj iy J iy

(O%)) <isf)

(A27)

In (A27), we have expanded g; in a power series in x;. The first three coefficients in (A27)

are
- 1
a1 = —37,
13
ad; = 56>
ci+1
K211

(A28)
(A29)

(A30)
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Similarly, we may derive the effective continuous-variable Ising Hamiltonian for any
spin. For example, in the case of S = 1, the coefficients «;, @, and K, ,,, become

a; = —(3/2-9+0(K?), (A31)

a; = (6—%3/2)+ O(K*), (A32)

Kyy1 = c1+6~4./2). (A33)
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