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A line shape of the quasi-local level induced ‘at the impurity by a quantizing magnetic
field, in a weakly doped crystal, is studied. -

In papers [1, 2] the influence of impurities on the electron energy spectrum of a semi-
metal in a quantizing magnetic field was considered. Within the framewoik of a simple
model for a single-band system with a parabolic dispersion law for electrons, by means
of the local-perturbation method and within a linear approximation with respect to the
impurity concentration (n;) it was shown that a magnetic field induces the local and quasi-
-local levels at the impurities. Positions of those levels are determined by the following
expressions?:
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Above, the electron spin has been neglected for simplicity, and the notation is: @ — the
cyclotron frequency, m — the electron effictive mass, #, — depth of the potential well
associated with the impurity, @ — range of action of the potential, / = \/ W — the
cyclotron radius, N -— the magnetic quantum number.

In Ref. [1] the following expression determining the electron density of states was
found

o(E) = og(E)+4o(E), (2
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where gg(E) is the electron density of states of a perfect crystal in the magnetic field and

2N; I'(E)+ng (E)A(E)(f'(E)
I'*(E)+A%(E)

Ao(E) = )]

is the contribution to the density of states due to N; impurities. The functions 4(E) and I'(E)
which occur in (3) are of the form I'(E) = —ng(E)|f'(E); A(E) = —[1 —uo f(E))uof'(E).
A prime sign over the functions g(E) and f(E) denotes their derivatives with respect to E,
and f(E) is a real part of the Green function with the imaginary part given by
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It was assumed in [1] that peaks of the density of states, due to impurities and described
by the expression (3), had a Lorentzian shape. In the present paper we investigate more
accurately a behaviour of the electron density of states in the vicinity of the quasi-local
levels.

Taking into account that
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(with ¥ being a volume of the system) we rewrite the formula (4) in the form
2rh \3/?
g(E) = % (——) ou(E)- (6)
mowL

The function g(E) has no singularities in the region of the energy electron spectrum of
our interest, therefore below the Landau levels we can put in (6)
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and get
g(E) ~ \/_(1/%“1)1:)3/2 JE. (3

In the regions of the energy spectrum we are interest in, a main contribution to the real
part of the Green function f(E) is given by the following formula (see Ref. [1] for details)
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Now taking into account (8) and (9) we get (see also Fig. 1a)
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Fig. 1. (a) — Behaviour of I'(E) and A(E) near the bottom of the (N 1)-th Landau level (b) — o(E) and
S(E) vs E for the N-th Landau level and the graphical solutions of the equation 1-u, f(E) = 0 (schematically)

By substitutiﬂg‘ (10), (1 1) and the derivatives of the functions g(E) and f(E) into (3) we find
2N; E—[1—(Fy(E)/e)"*]Fn(E)

Ao(E) = (12)
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The formula (12) gives a shape of the function describing a contribution to the electron
density of states which are induced by a magnetic field at N; impuritics in a high energy
part of the N-th Landau band. Thus, 4¢(E) takes its maximum for E = E,y (see Fig. 1b)
and the minimum for E = E, = (N+1/2)ho—% ¢, where
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27N; [ N \? '
Ao(E,) =~ (%) , (for N <L) (14)

After taking the minimum value for E = E, the function 4¢(E) increases and reaches
infinity in the points where the Landau levels are located, i.e. 49(E = (N+1/Dhe) =
The peak of the function 4g(E) in the vicinity of E = E,y is asymmetric what is due to
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a mechanism of its formation — by the separation of the energy levels from a bottom of
the Landau band as the magnetic field increases, since & ~ H2.

The peaks in the density of states due to impurities will be profound against the back-
ground of the density of states of a perfect crystal if

Ao(Ey)  mnd® (ho \¥? (ho - .
el — — s A
QH(EqN) 2 \/ 2\ ¢ ) . Er (1)

where ep is the Fermi energy.
From (15) it is easy to find a condition for a concentration of impurities for which
the quasi-local levels play a substantial role in physical phenomena. The condition reads

maZjuyl\® [ho\'* n,
n; > 24755/2 (h—2> (*{;;) W » (16)

There are two small parameters in (16) : (hw/ep)'/? and L~%2, hence for a small electron
concentration 7, a small amuont of impurities is required to exhibit the quasi-local levels.
The above inequality is satisfied for values of the parameters characterizing semimetals
and degenerate semiconductors.

The behaviour of ¢(E) in the interval of the N-th Landau level as well as the graphical
solution of the equation 1—uu(f(E) = 0 which determines a position. of the quasi-local
levels, are depicted schematically on Fig. 1b.

It follows from the above discussion that, to a good approximation, the peak in the
electron density of states due to the quasi-local levels can be described by a Lorentzian
curve and the remaining part, on the right hand side of E,, can be taken into account
as smearing out of the Landau level, caused by impurity-electron scattering. That part
is what can be-described by the Dingle factor.

The author wishes to thank Professor J. Morkowski and Professor M. I. Kaganov
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