Vol. A58 (1980) ACTA PHYSICA POLONICA No 2

ON DIFFERENT STOCHASTIC APPRCACHES TO SYSTEMS
WITH MULTISTATIONARY BEHAVIOUR*

By G. Czaixowskl AND A. Eapa
Institute of Mathematics and Physics, Technical and Agricultural Academy, Bydgoszpz**"
( Received December 21, 1979)

A system with one order parameter x obeying a polynomial kinetic law is discussed.
Different approaches to the corresponding stochastic equation of motion are compared.
Assuming that the system considered is an open chemical system we constructed an appro-
priate master equation and compared the resulting stationary probability distribution to those
obtained by adding a stochasiic source term to the macroscopic equation of motion (which
yields a Langevin equation or an equivalent Fokker-Planck equation). In the so-called
thermodynamical limit the two distributions have the form const Xexp(— VW), where V
is the volume of the system and ¥ an appropriate potential: a kinetic potential in the Lange-
vin approach and a stochastic potential in the master equatlon approach. Both approaches
are equivalent if the corresponding potentials have the same global minimum (minima).

1. Introduction

It turned out in the recent time that the concept of the order parameter, originally
introduced by Landau to treat structural phase transitions, has proved very useful in the
theory of phenomena arising in open, far-from-equilibrium systems, such as laser, hydro-
dynamical systems, chemical reaction systems etc. (see for review Haken {1, 2.

The properties of the systems (in particular, their temporal behaviour) are described
by one or several order parameters, i.e. very few degrees of freedom replace the great
number of degrees of freedom of the subsystems.

The order parameter x (or a set of such parameters x,, ... » X,) represents the behaviour
of the system on a macroscopic scale, and is thus a macroscoplc variable. Often the equa-
tions for such order parameters acquire a rather simple structure with respect to their
time dependence. Typical equations are

Xy Rj = fi( s %), (D)

dt
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where f; are, in general, nonlinear functions. In the following we discuss systems with one
order parameter x only. The order parameter equation (or the macroscopic equation
of motion, or the kinetic law) has the form

dr
X=fx)=—-——, ()

dx
where F(x) will be called a kinetic potential. States for which f(x) = 0 and f'(x) <O,
i.e. minima of the potential F are then steady (= stable and stationary) states. In the
limit # — co the systems achieves one of its steady states (multistationary behavior).
Here we say that the potential F governs the kinetics of the system.

Since the systems of interest are macrosystems consisting of a great number of micro-
systems (subsystems), e.g. chemical systems consist of a great number of reacting mole-
cules, the fluctuations of the order parameters play an important role. Furthermore, the sur-
roundings exerts fluctuations on the system. There are several ways to incorporate fluctu-
ations in the deterministic order equations (1).

1. The Langevin method

We add a stochastic and/or external driving force Q():

x = f(x)+ Q). €)

Therefrom one may deduce a Fokker-Planck equation:
M a d g N 62 &
569 = = () K1+ 55 ) [Kap) @

where p[x(f)]dx is the probability that the order parameter takes a value from the interval x,
x+dx, at a time ¢. One usually takes .

Ki(x) = f(x), Ks(x) = C = const, )
cf., for example, Haken [1].

2. The “master equation” approach

One assumes that the chosen set of macroscopic variables (order parameters) consti-
tute a Markov process. As a consequence of this Markov assumption the probability
density p(x, t) obeys a Chapman-Kolmogorov or master equation

p(x, £) = [{wx»p(y, )—w(x)p(x, 1)} dy. (6)

A solution provides both the macroscopic equations for the rate of change of the quantity
x, and the fluctuations around this macroscopic behaviour. From the master equation,
via Kramers-Moyal expansion one gets again the Fokker-Planck equation:

op 0 0%
— = — —c;(X)p+7 73 ()P, (0]
ot ox ox
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where c;(x) are “jump moments”

ci(x) = § (y=x)w(ylx)dy ®
see also van Kampen [3].

In the following we discuss the correspondence between the macroscopic evolution
given by Eq. (2) and its both stochastic pictures (3) and (6) for systems where f(x) is
a polynomial. Those systems exhibit a multistationary behavior.

In Section 2 we establish the correspondence between the macroscopic evolution and
a corresponding stochastic differential equation. The resulting stationary probability
distribution for the variable x has the form const x exp (— VF(x)), where V is the volume
and F(x) is the kinetic potential.

In Section 3 we discuss the “master equation” approach. For the system considered,
under special assumptions on the transition probabilities, a stationary probability solution
may be easily found. In the thermodynamical limit it takes the form const x exp (— V@(x)),
where @ is a “stochastic potential”. Thus the compirison of both stochastic approaches
may be reduced to a comparison cf the potentials. In both cases the steady states for the
macroscopic equation (2) correspond to local minima of the potentials. We also estimate
a mean transition time between neighbouring steady states in the master equation approach.

2. The Langevin approach

Instead of the deterministic process (2) we consider a stochastic process x(¢) described
by a stochastic differential equation

dx(1) = fix()dt+e(1) (¢ > 0), ®

where £(¢) is a “white noise”, and dx(¢) denotes the so-called stochastic derivative of the
process x(z). It was proved (cf. [4]) that »
lim lim P(|x,()—xol < d) = 1, : (10)
=0 t> w0
where P( ) denotes a probability, x, is one of points where the kinetic potential F(x)
attains its global minimum and d > 0 is an arbitrary constant. Following van Kampen [5]
and Kubo et al. [6] we put e ~ V-V2, where ¥ is the volume of the system. Thus the transi-
tion ¢ > 0 in (10) corresponds to the so-called thermodynamical limit.
The same conclusion can be expressed in terms of the stationary probability distri-
bution of the process (9), which is of the form

p(x) = ¢, exp (— 332 F (x)) = ¢y exp (—VF(x)). (11

In the thermodynamical limit the distribution becomes the §-distribution peaked about
the global minimum of F (a sum of é-distributions if they are more than one states where F
achieves its global minimum, cf. van Kampen [7]). The distribution (11) follows also from
the Fokker-Planck equation (4) by setting K, = 2/V, cf. also Haken [1].
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3. The master equation approach

Since the Langevin approach can be applied to a quite arbitrary process (2), the master
equation approach requires a special shape of the kinetic function f(x). We assume that

| £3) = a()— b, a2
where

a(x) = a;x" T 4oasx" 4 L 4o,

b(x) = agx"+ox" 2+ ... +a,_X, (13)
and

OC,-}O, l =0, 1, pagy 7',060 >O.

The kinetics (12) may be realized .in an open chemical system. Then we identify x with
a concentration of molecules called X, and the equation x = a(x)—b(x) describes a process
where X is created by an autocatalytical reaction, i.e. its generation rate a(x) is proportional
to x (cf. (13)), and it decays by an autocatalytic reaction with the rate b(x). In the master
equation approach we investigate the number of molecules n as an integer-valuzd random
variable, n = 0, 1, ..., N. The master equation (6) is assumed in the form

P(ﬁ, t) = wn,n—1)P(n—1, t)+whn, n+ DPn+1, t)—[wn+1, n) +wn—1, n)]P(n, 1), (14)

where w(n, m) are transition probabilities per unit time (cf., for example, Haken [2],
p- 279). The mean value of the quantity (n/V) corresponds then to the macroscopic con-
centration x. The transition probabilities are obtained from the phenomenological rate
functions a(x), b(x) in the following way:

w(n+1, n) = V[cxl%)r%l + .. +oc,:|,
(), n
wn—1,n) = V[oco 7 + oo oy 7
w(N+1, N) = w(—1,0) = 0, (15)

where we -denoted (n), = n(nél) ... (m—k+1), cf. also [2, 8-10]. One can easily show
that tor large N the transition probabilities are proportional to the phenomenological rate
functions:

wn+1,n) = Va (%) , wh—-1,n)=Vb <%>, (16)

Wheré_v = N/V. The number of states is finite (n = 0, 1, ..., N); if &, > 0 then the station-
ary probability distribution exists [11] and satisfies the equation

win, n—1)P(n—1)+w(n, n+1)P(n+1)— [w(n+1, m+w(n—1, n)]P(m) = 0. an
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1t follows immediately that

n—-1
Tw(+1,i
Py = P | [ LD, (18)
w(i, i+1)
i=0
where P(0) is determined by the normalization condition.
In the thermodynamical limit (N — oo, ¥ — o0, but v = N/V < c0) the distribution
(18) takes the form

P(n) = ¢y exp (—VOn/V)), (19)

where ®(n/V) is a “stochastic potential”
d(x) = —[ (In a(s)~In b(s))ds. (20)
0

The proof is indicated in Appendix. Thus, the stationary distribution in the master equation
approach has an analogical form to that obtained by the Langevin approach. However,
the two distributions are determined by two various potentials, the kinetic potential F(x)
and the stochastic potential @(x). Now, we compare the potentials. Let Z C [0, »] be the
set of roots z; < z; < ... <z, < v of the polynomial f(x). Denote by S the set of stable
roots, and by G and I the sets of points where F and & attain global minimum, respectively.
We have the following relations: -

1. z,e8,2z,¢8,z; €8, ... etc.
Lo d
2. If z;e Z, then In a(z;)—In b(z;) = 0. For z;e ST (In a(z)—-1In b(z)) < 0.
' ’ o odx

3. F and & attain local minima at each point from S.

4. F(z;) < 0 and &(z,) < 0. @n
5. If Z = F (the empty set) then G = I' = {v}.

6. F(x) < 0 and &(y) < 0 whenever xe G and yel.

Define an integer-valued function n(x), 0 < n(x) < N, x € [0, v] such that

vn(x) - Mx) +_1)

i.e.
(n(x)y = fléf—) <x< "F’?/H = () +1>.

- The following property of the probability distribution (19) can be proved:

lim Py({n(x)}) =0 for x¢rI, xe[0,v],
N-w

}Iim Py(n(y)?) = p; >0 for viell ={y, ..., J’k}» (23)
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and

R

pi= 1L
1

I

1

(We denoted P(n) = Px({n)) to emphasize the dependence on N.) The proof follows from
the definition of the poténtial @ and from the relation (19). For an arbitrary but fixed
xe{0,v], x¢I', we have

N
Py({n(x)}) = Py(0) exp <— ] ¢(<n(yi)>)+RN(<n(yi)>)>

N .
X €Xp {; [2(Kn(y2) — S({n(x)P)] +e(Kn(x)>)— C((n(yi)>)} (24)
for y,e I, see also Appendix, relations (A2) and (AS5). Since
2(y) = 2y, P = ¥'(y) (25)
then
. N__
Ilvlinw—v [o((n(y)> —2(n(ypN] = 0, (26)

and the following inequality holds

N
Py(0) exp {— - 2Kn()) +sz(<n(yi)>)}

k
< {_; exp [c(<n(y)) —c(<n(roN ]}~ @7

Inserting this in (24) we obtain
Py({n(x))) < a; exp <— l%) , (28)

which implies the first of the relations (23). According to the inequality (28) and to the
normalization conditions for Py’s we obtain

lim Py({n(y;)>) = a, >0 29
for an arbitrary y; e I'. Because of the relation (26) and the following one

Py(n()y) _
Py(n(y j)>)

the second of the relations (23) holds.

exp {%{ [2({n(y)») — 2(n(yIN]+e(n(y)) —e({nly ,-)>)}
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Using methods of the theory of Markov processes (cf., e.g., Ref. [12], Chap. IV)
one can estimate the mean time of transition between states y;, y;;,; € I'. Denoting the

time by #\(Z, i+1) we have
ty(i,i+1) = a, exp {% ~In N+In v+c({n(y:)?) —C(<n(x)>)} ; (30)

where x is an arbitrary point from an open interval (y;, ;41), @2 is a certain constant,
and the constant a; is defined by

D(n(x)))—2(n(y:))) = ay > 0. (3D

Thus we have

lim ty(i,i+1) = o0, lim ty(i+1, i) = oo. ' (32)

N—- N- o
Comparing relations (23) and (10) we obtain that the master equation approach and the
Langevin approach predict the same final state if and only if G = I', i.e. the potentials F
and ¢ have the same global minima. A simple example shows that the minima may differ.
Let zq, 2., z3 be the roots of the polynomial

f(x) = a(x)—b(x) = o3 +0; x> — 00, x —ox>. (33)
We have
oy = 0oz +25+23),
oy = 0o(212,+ 2,25+ 2,23),
oy = 0g(212,23)- (34)
Let us fix
o >0, z3e(0,v), ue(0,1), (35)
and take
Zy = uzz, =Y 11;—1 Z3. (36)
Inserting (36) into (34) and (33, one can prove that for a suitable chosen y > 1 we have
F(z3)—F(zy) > 0, &(z3)—P(zy) <O, 37

ie.z,€G,z; ¢ G and z; ¢ T, z; e I'. In this example the Langevin method would predict
the state z; as the final state, and the master equation approach would indicate z; as the
final state.

4. Conclusions

The stationary behaviour of macroscopic systems with one order parameter can be
described in terms of certain potentials. In the macroscopic (deterministic) picture the
system tends asymptotically (i.e. for # - o) to one of minima of the kinetic potential F.
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The same potential determines the shape of the stationary probability distribution in the
stochastic Langevin approach. The probability attains its maximum at a global minimum
of F. Another potential @ (the stochastic potential) determines the stationary probability
distribution i1 the master-equation approach. Here again the maxima of the probability
coincide with global minima of the potential ¢. However, the latter may differ from the
global minima of F. Then the two stochastic approaches predict different final states of
the system.

We discussed various types of potentials for systems with one order parameter (“one
internal degree of freedom” in terms of the catastrophe theory). According to the discussion
of Wentcel and Frejdlin [4] it seems that the concept of the kinetic potential may be very
useful also for systems with several order parameters, and, in particular, for non-gradient
systems, e.g. for chemical systems exhibiting oscillatory, or limit cycle behaviour (Brusse-
lator, Or€gonator, etc.).

APPENDIX
We consider the probability distribution (18)

"—-1 . 1’ »
o= ro [ 20082
i=0

where w(n, m) are defined by formulas (15). With respect to (16) and (23) the distribution
can be written in the form

P = Py(Cn) = Pa(0) exp { ¥, [ a(<i=1)—In b} (an

Using the well-known Euler-McLaurin summation formula we obtain

n

Y, {lna(Ki—13)—In b))}

i=1

{n)y
= N { J (In a{x)—1n b(x))dx} +Ry(n), (A2)
. (1
where
Ry(n) = GN(n)+HJ%J(n)+HIZV(n)’
and

Gy(n) = % In o,—3 [In a(<nd)+In b(Kn+13)] -3 In b({1)),

n (1)

A .z BKi+1y—2)
i ‘EZ j <Z N) Kitio—27
0

i=1
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n {1y
Him) = 5 Z f (zz— W) Ay —2)d,
i=1 0
a2 4
Ay) = pi lna(y), B@y) =) e In b(y). (A3)

One can verify that

(1) lim Hi(n(x)) = c(x) uniformly for x e [0, v].

N-ow

(2) lim HZ(n) = 0.
N—-w

(3) lim Gy(n)/N = 0. (A4)
N-w

Thus, in the limit N — oo the distribution P(n) = Py({n)) takes the form

Py({n)) = Py(0) exp {— g O({ny)+c(x)+In N} & cy exXp {— g cb((n))} , (A3)

P(n) = cyexp{—V';b( ;)},

wherei P(x) is the stochastic potential defined by (20}.

or
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