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THE ORBITAL DYNAMICS IN THE SPIN FLUCTUATION
FEEDBACK APPROXIMATION: THE OUT-OF-PHASE MODE
IN SUPERFLUID °*He-A
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A theory is proposed, which can permit a description of an out- of-phase mode in
3He-A which results when the spin fluctuation feedback effect is taken into account. A s1mple,
phenomenological theory was developed and a kinetic equation technique was used for
microscopic description. Some of the experimental consequences are discussed briefly.

- 1. Introduction

In their classical paper, Anderson and Morel [1] built the p-wave theory of superfluidity
in the fermion systems where pairing between *He atoms with parallel spins takes place.
In such a model, we have two-spin subsystems which act completely independently and all
the phys1cal quantities can be described considering only one group of spins. Subsequently,
after the discovery of the superfluid phases of *He it has been found that this model,
despite of the fact that it possesses the required symmetry from the NMR point of view,
is not stable and must be- generalized. This generalization [2] known as the feedback effect
(FE), is a particular example of the theory called the strong-coupling (SC) theory, and
consists in taking into account correlations between the up and down spin populations.
In such a description, the FE is responsible for an existence of the stable ABM phase.
The question arises of how important are the FE or SC effects on the nonequilibrium
properties of the ABM phase, such as, e.g. sound propagation. Trivial absorption of the
SC corrections into renormalized value of the order parameter is not sufficient. Wolfle
and Koch [3] claim for the first time to find the SC effects important to nonequilibrium
phenomena and to estimate their effect to be about 10-209%; of the total sound absorption.
For the present paper we define the FE theory as the one in which two coupled I vectors,
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each for one group of spins, are being introduced. In the FE theory the most stable config-
uration is the one where I, and I, are parallel [2]. It should be mentioned that both vectors
have their own dynamics. We expect that their orbital dynamics is very similar to the
usual one and can be described by a slight generalization of the existing theories which
involve only one [ vector.

In Section 2, we develop a simple phenomenologlcal theory based on the Leggett—
—Takagi [4] theory of orbital dynamics and in Section 3 we make microscopic calculations,
based on the kinetic equation technique, for such situation. Section 4 contains some spec ula-
tions on the possible experimental consequences.

2. Simple phenomenological theory

As we have already stated, the essence of the phenomenological theory consists in
introducing two I vectors, each of the two with its own dynamics. The first obvious question
is that, what sort of motion one should expect, i.e. do the I vectors have some sort of pro-
cessional motion against each other, or if one can visualize their dynamics in terms of two
coupled oscillators (pendulums). It is readily noticed, that the first possibility takes place
only if one takes into account the partlcle—hole asymmetry, because the I vectors commute
in the approximation of the particle-hole symmetry, see: Ref. [4], with the special attention
to the formula (4.3), and the remarks that follow. Then, in absence of the static magnetic
field we are left with the coupled pendulums model, where feedback effects are responsible
for the coupling of those two oscillators. It is well known, that general motion of two
coupled oscillators may be considered as the superposition of two normal modes of the
oscillation. In the first of the normal modes, two oscillators move in phase with equal
amplitudes, whereas in the second normal mode they move in opposition — the out-of-phase
motion — again with equal amplitudes.

. To make qualitative the above intuitive description, let us generahze the Leggett-Takagi
theory [4] of the orbital dynamics. The energy of the whole system can be divided into
three parts, that refer to: the spins up, the spins down, and the coupling between them.
Therefore, one can write i

EQ, l¢) = E(L)+E(l)—7l -1, 2.1

where E(I,) contains all the terms depending on the [, vector only. This part of energy
contains the normal-locking energy, i.e.

i Enh = -3 gnt(T) (l ln) »

where we neglect the dipolar energy.

. In the theory presented here, the coefficient WT)is of the main 1mportance and the way
of how to calculate it forms some difficulties. We used in calculations the free energy
expression in general form [5], assuming that the SC values of B; parameters are still valid
for thekind of dynamics discussed here, which should be true for a sufficiently slow mo-
tion. Assuming the A-phase to be described by the ABM order parameter and by sonie
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straightforward calculations, one gets (see: [6] for details in notation)

3.06\°
=3 Ny ==
? sN()<1-42)

= $90(2814 B35+ Ba+Bs), (2.2)
where ¢ = 1—T/Tc, and AC,/Cy is the ratio of the specific heat jump at T, and the specific
heat just above T¢. It is easy to verify that y = 0 in the weak coupling approximation,
since we do not expect any coupling between the up and down spin populations. For SC
values of f8; coefficients [6], we find that

P> = 1940, (2.3

AC\? -
(‘CK) (ks Te)“t°(2B, + B3+ Ba+Bs)

where &' > I.

To construct the theory of the orbital dynamics which takes into account the feedback
effects, we assume that both systems are fully characterized by the existence of the !, and
I, vectors. Following Leggett and Takagi [4], let us introduce the K, and K|, which we can
visualize as pseudo-angular momenta of the Cooper pairs with the up and down paired
spins, respectively. Then, the equations of motion are, o stands for 1 and |

ia == laz X Ka/Xorb,a’

. 0E K, . -1,
K= —lx — - % | = _ :

2.4
ala Tk, N3 Ta ( )

When writing the last equation we postulate, that both spin subsystems are relaxing to-
wards the same equilibrium configuration with the normal component. Using expression
(2.1) for the I-dependent part of the energy of the system, together with (2.4), after Fourier
transformation and linearization, we arrive at the equation which gives the collective modes
of the system, assuming that 6d = 0

g (w)+2yg(w) = 0, . 2.5

where we have assumed, that all parameters which describe both systems, are equal, e.g.
Txt = Tk, = Tg €tc., and the function g(w) is defined as follows:

1+iwtg iwt
+8& .
Tx 1+iwr

(@) = iy, (2.6)
Let us discuss the consequences of equation (2.5). First, in the weak-coupling limit, i.e.
when y = 0, we can re-derive all the results of Leggett and Takagi {4]. In the collisionless
limit, i.e. wt> 1 and wtg > 1, we find two flapping modes. The one with the frequency
®* = g.[Yor Is the usual mode, which has been discovered by Wolfle [7], and it repre-
sents in-phase motion. The other mode is [8]

=5 o7 @7
Xorb Xorb

and represents out-of-phase motion; the second term in (2.7) is due to the feedback effects.
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3. The kinetic equation approach in zero magnetic field
In the ABM phase, the equilibrium order parameter is
A;g(") = AO(T) (nx+ iny) (o-yai)aﬂd‘i’ (3'1)
where we have chosen the l., vector along the z axis. If we take the d vector along the y
axis, then _ .
A53(n) = Ao(T) (n,+in)00p ' (3.2)
Both spin populations are then decoupled.

. Let us see now, how the order parameter changes when we start with the small vibra-
tions of the I vectors. We can describe such vibrations by performing small rotations
with the angle 80, (68 < 1) of both imaginary parts of the order parameter (3.2). This
gives us '
' A, = A(T) (ny+iny,+in 00),

4, = A(T) (ny+in,—in,50), (3-3)
or in terms of the tensor d;
0 0 —idb
dy=4(T)| =i 1 0 |. (3-4)
00 O

Small variation of the order parameter 54,4(n) for such rotation is (6% — the Pauli matrix)
| 54,(n) = ido(T)n,0%06. (3.5)

Both results, i.e. (3.2) and (3.5), tell us that near the ABM phase the order parameter is
diagonal in spin space, although is not proportional to the unity. This makes possible
a discussion of the up and down spin populations separately, remembering that they are
coupled by the feedback term.

For the description of the FE in the ABM phase, we will use the usual BCS formalism
supplemented by the term which preserves the stability of the ABM phase. Such a Hamil-
tonian reads

H = Zéka&akﬁéz Y (ka’aaéaﬁy"‘X;‘cj;{’aaizﬁaf;y)altaaikﬁa—k'yak’ﬁ’ (3.6)

ko' kk' afyé
where a;, and a,, are the creation and the destruction operators of a 3He atom, respec-
tively. Performing Hariree-Fock factorization of the interaction term, we arrive at ‘

H = ; éka:aaku +% kz;i {aljaaikBAﬁa(n)"'h'c‘}’ (37)

where the gap equation has now the form

Aﬁa(n) = k'za thtf'ya<a—k'yak'a> (38)
Y
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and

V:If’w = Viaebas0s, —-x;.{;‘,oi,,a,’;,.

The mentioned Hamiltonian, buf with the different gap equation, is the usual one which
permits a description of the ordinary orbital dynamics [9]. The kinetic equation, which
follows directly from the form (3.6), preserves its usual form. At this stage, the main ques-
‘tion is that, what is the true susceptibility in (3.6). At the first glance, one might be forced
to use the usual total susceptibility. And indeed, in the static case it is a quite successful
approach, see: e.g. [10] and [11] to explain stability of the ABM phase. Anyhow, it should
be remembered that in the static problem the superfluid and normal components are in
equilibrium. In non-equilibrium situations, the choice of total susceptibility might not be
the case as it was indicated in [8]. At this stage, the problem has been left to.a more micro-
scopic a"pproach'and we treat xJ. as a phenomenological parameter. When we think of
xih as referring to the Cooper pairs only, we can use the Leggett-Takagi result [12], which
is for the ABM phase

Xgo = Xno[l —f(T)] (5ij'—didj) 3.9

dn "
and y,0 = % y2h2 (E) We ought to emphasize, that x5, has a different temperature

dependence near T than the total susceptibility.

Our main purpose in this section will be to find the dispersion relation of the out-of-
-phase mode (2.7) based on the kinetic equation technique. The collective excitations are
described by the equation for variation of the order parameter, which comes from (3.8),
and near the ABM phase is

045(m) = Y {(Viaw — 1) Ok —(xii'—xiif)5n§9£§}-k§ Ou AoV, (3.10)
Kk’ .

Equation (3.10) must be supplemented by a kinetic equation,: which describes the time
evolution of on{®" as follows:

WOty — E9OTty + 0Ty 2y = B8Ry — A0 (3.11)
Here, the quantities with a tilde denote 4 x 4 matrices in the Nambu space of pdrﬁcle-hole
and spin space. Underscored quantities will denote 2 x 2 matrices in spin space. The
quantities which have appeared in (3.11), are defined as follows:
the equilibrium matrix distribution function

1
(Qk 5 Z_E'k tanh ‘;‘ ﬂEk) .
‘ﬁo _ ( %_ékek —'OkAk ) , (312)

kT —BkA;f —;—-l-f,ﬂk

the equilibrium energy matrix

~o _ (& 4,
@ = (A: -ék)’ (3.12a)
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the change in the matrix distribution function

B 5109 spOn )
6nk=(5n£10) 5n£11_)a . o (3.13)

‘and the change in the quasi-particle energy matrix
~ . {0 o4, .
55, = (5 40 ) (3.14)

We have neglected Fermi-liquid effects and external fields. Remembering the fact
that matrices 4, and 84y, are diagonal, Eq. (3.11) can be solved easily and in the approxima-
tion of partxcle—hole symmetry, one finds

) 5D = g(n)5d(n)— (% *—|4(®))f (n, @)34(m)+ A7) f (n, 0)o4*(m),  (3.15)

1%

where we have defined

. 1
p(n) = Z 55 tanh 3 A (3.16)
k

L]

1
f(n, w) = z IW@ )tanh > BE:. ., 3.17)

1%

‘Here and in the following we have made the replacement

BN DI O3]

ik
Assuming p-wave pairing and 64, = n,d,, from (3.10) and (3.15), one finds

dot 3 _Vidlnigy = 3 VHucf( o) (@*—2141%)>dj, (3.18)

B=a, x
where the last term in (3.10) vanishes due to angular integration. In Eq. (3.18) the coef-
ficient V# is defined as follows:

B V=X p=
e {—(x""—x’y), B=

where ¥, ¥, ¥ and y* are appropriate p-wave coefficients.
The gap equation now takes the form

i ‘
1= —— V(412 @). 3.19
b=-p E 4% > (3.19)
8

Using Eq. (3.19), the lhs of Eqg. (3.18) can be rewritten as follows:
LHS = 1 {V*d,(3(n2g) —<{o)+ V[Qdz+d,) <n;od—dl o)1} (3.20)

Rl R
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Performing a partial integration in the angular variable, the first term in Eq. (3.20) takes
the form

Knlpy—(gd = < 'bl‘l > —2¢n2g(my>, 3.21)
Tl
where
2
g(n) = — ';EL ;1;: (3.22)
O
and

np = (B4 1)72,

In the weak-coupling limit, i.e. when both I vectors oscillate together (34, = 64 > Eqgs.
(3.18) and (3.20) are reduced to the Leggett and Takagi result [4]. Using Eq. (3:21), we can.
explicitly identify the frequency dependent orbital susceptibility

dQ tanh 1 BE, 1 &2
=3 A%T) | —= n? L 1+ = 3.23)
Xorb(w) 4 0( )f 477: n; Ek 4Ei-0)2 + Et% ( )

1K

and the normal locking term

|4,1> dny,
8 = =34 (v ) Be S5 (329
(L}

For the out-of-phase mode when the change of the order parameter is given by (3.5),
Eq. (3.18) gives

wZXorb(w)_-gn(T)—zv(T) = 0’ (325)
where the coefficient p(T) is
WT) = 3 AT )—"(——)— <( ~1) Z — tanh 1 BE > (3.26)
4 <0 (T) ng k
and
It 4 3.27)
=-S5z (3.27)

4. Conclusions

We have developed a theory for a new orbital mode in superfluid *He-A for which
the feedback effect is essential. The temperature dependence of the frequency of the out-of-
-phase mode directly reflects the properties of the coefficient y(T'), which is related to the
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susceptibility in (3.6). Thus, from the dispersion relation of the out-of-phase mode we can
obtain information concerning the susceptibility, entering the Hamiltonian (3.6).

We can offer two experimental possibilities for the detection of the out-of-phase
mode, discussed here. One is the A phase in a magnetic field near the A-N transition,
where the coupling of the out-of-phase mode to zero sound would be possible due to the
difference between the magnitudes of the order parameters for the up and down spins.
Another possibility is the A-B interphase boundary, where according to current theories
{13], the system forces the I vectors to rotate against each other in order to shift from
the A phase to the 2D phase.

Part of this work was done at Sussex University, England, with support from the
Science Research Council, and part supported by the Technical University of Wroctaw.
The author greatly benefited from conversations with Professor A. J. Leggett.
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