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The topological classification of symmetry defects and solitons in thin, essentialiy
two dimensional, layers is given for some liquid crystals. The method of this classification
is based on homotopy groups of a manifold of internal states of a liquid crystal.

1. Introduction

During the last few years there has been many successful attempts to introduce the
methods of algebraic topology, such as the homotopy groups [1-3], as working tools
into solid state physics. In particular the scheme of classification of defects and solitons?
in an ordered media was introduced and successfully applied in liquid crystals, normal
crystals, magnetic materials and helium 3 and 4 [4-14].

The classification of defects in three dimensional nematics, cholesterics, smectics A
and C is in principle already completed [4-8, 12, 14]. However, not much work has been
done on other smectics. The same is true for two dimensional problems (i.e., for thin and
flat layers of liquid crystals).

Undoubtedly the problem was thought to be simple, especially since the three dimen-
sional case was already solved. There are, however, some subtle aspects to the problem.
For example, in three dimensional smectics the topological classification of defects meets
one serious obstacle [12]. The possible distortions of the medium in principle cannot
include such a class of distortions in which the smectic layers can be considerably bent
or in which the thickness of smectic layers can be altered. By attempting to form such
distortions we would simply break the layers and the cracks probably would be filled
with disordered material (as suggested in slightly different contexts by [9]). The point is
that such distortions are topologically possible and “contribute” significantly to the clas-

* The main part of this work was done during the author’s stay at the International Centre for
Theoretical Physics, Trieste, Italy.
** Address: Instytut Fizyki UJ, Reymonta 4, 30-059 Krakéw, Poland.
1 By terminology of Finkelstein “kinks” or “homotopons” (see D. Finkelstein, J. Math. Phys.
7, 1218 (1966)).
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sification of defetcs. On the other hand, in thin flat layers of liquid crystal the bending
of layers and the altering of their thickness are excluded by boundary conditions.

The second reason why the two dimensional problem is interesting follows directly
from experiment At least half of all experiments are being performed on thin layers of
liquid crystals (the sample is contained between two glass surfaces — the distance between
them is very small). The third reason is valid for one subgroup of smectic liquid crystals,
which by de Vries [16, 17] are classified as liquid crystalline fluids2. These smectics are
of the A, C, B and F types [16]. They show distinct two dimensional, crystal-like, short
range order. Each layer can be considered as an independent two dimensional crystal.
The correlation between layers is rather weak. Therefore, it would seem that studying
defects in short range order structures we can neglect the three dimensional structure of
smectic layers and consider them as a stacked pile of independent two dimensional crystals.
In the present paper we will study defects (and sohtons) for thin essentially two dimensional,
layers of nematics and smectics A, C, B and F.

In the second section we will present short range order and long range order symmetries
of liquid crystals. We will also introduce the idea of short range order and long range order
defects. They will be classified in the third section. The paper closes with very short sum-
mary.

2. Symmetry of liquid crystals

The knowledge of symmetry of the medium is crucial for the application of topological
methods for the classification of defects. Up till now there was no doubt as to what is.
the symmetry of nematics, smectics A and C [16-19] (in the terminology of de Vries —

smectics A, and C, [18]).
Fig. 1. The herringbone packing of molecules of 11qu1d crystals. The long axes of the molecules are per--
pendicular to the plane of the drawing., Dashes denote ‘“‘cross sections” of the molecules. The molecules,.

even if asymmetric, are represented as symmetric thanks to the two fold rotational disorder around their
long axes and thanks to the symmetry up and down (thelong axes point as frequently upwards as downwards):

There was, however, much doubt about the structure of other smectics. Now, the
situation seems to be clarified [16]. Without going into details, we will give a short summary
of the main results of papers [16, 17].

First of all, at any single instant of time, the natural packing of molecules in any
liquid crystal is a herringbone packing (see Fig. 1). Such a packing is the true picture even

2 In contrast to some smectics which are called liquid crystalline solids, [16, 17] because they show
crystal-like three dimensional short range order.
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for nematics! There is, of course, much additional molecular disorder, thanks to frequent
reorientations around the long axes of the molecules. Therefore, on the average there is no
symmetry at all. Sometimes a different situation can occur. A typical “disordered’’ molecule
which, on the average, shows some symmetry, such as for example in smectic B [16], is
represented on Fig. 2. The site symmetry at the point P in Fig. 2 is now mmm (i.e., three

P

Fig. 2. The disordered molecule for the smectic B

mirror planes perpendicular to one another). It should be stressed that such symmetry
is statistical symmetry or mean symmetry. This means that if we could measure all positions
and orientations of the molecules in one definite moment of time we would find no
symmetry, i.e., complete disorder. In a sense the same situation occurs even in perfect
crystals. In the crystal, however, if we average positions of atoms over a short time interval
(say 10~'3 sec) we find perfect order. The similar scale of time for smectics is undoubtedly
many orders of magnitude longer (say 10-°~10-3 sec). The numbers given above are based
on some typical experimental data which can be found in any handbook on physics, or
chemical physics under the heading “relaxation times”.

Summing up all what was said above, we see that sometimes in a statistical sense local
symmetry can be quite high in liquid crystals. However, the liquid crystals behave much
like fluids or, at most, as super soft solids [19, 20]. Therefore, it follows that local crystal-
-like symmetry (if any) can extend over distances of the order of a few molecular lengths.
Such symmetry can be detected by X-ray diffraction [17]. The whole sample of the liquid
crystal can be considered as a more or less random collection of minicrystals differently
oriented. That is what we mean by the term: short range order symmetry. We can study
the defects in a single minicrystal and we call them “‘short range order defects.

Sometimes, however, such a collection of Jqoinicrystals is not distributed completely
randomly, and there is some average symmetry which extends over long “macroscopic”
distances. We can study this symmetry with the aid of a microscope. Such symmetry can
exist even in the absence of local short range order symmetry. The best example is the
smectic A,. There is no short range order symmstry. However, the smectic as a whole has
very high symmetry. Let us consider, for simplicity, a single layer of A,. It is invariant
under translations on a plane and under rotation about the axis perpendicular to the plane.
The molecules look on the average like trees in an infinitely large forest.

That is what we mean by long range order. Similarly we can introduce the definition
of “long range order defects”.

To finish this short discussion we will present a table where the symmetries for very
thin layers of liquid crystals are given.



930

TABLE 1

The symmetry groups for very thin layers of some liquid crystals according to [16]. The symbols which

denote the symmetry groups are given both in Schoenflies and in the international notation (when possible).

A denotes,semi-direct product. R denotes the group of one dimensional translations. I denotes operator

of inversion for centrosymmetric molecules. For noncentrosymmetric molecules it denotes inversion multi-

plied by an operator 2 which changes a left molecule into the right one. C, denotes the group of all possible

-rotations around a fixed axis. D, denotes the group Cq plus all possible two fold rotations around axes
perpendicular to the axis Co,

Miscibility symbol of liquid brystal Short range order I Long range order
——— = = = _T___ S
nematic or cholesteric® _ == | R2 A (D, QI

. —=| S — — el
A, | — [ R2 A (D®I)
- As o il T 1A II_ ol R2 A (C®D)
B = i BAGeD
B ' B DS®I (or C222Q1) _: B RZA—(wax)—I) a
F T C3I (or C2QI) _ |‘__ B R* A (C2®I_) L

2 Tp very thin layers of cholesteric liquid crystals the samples behave like nematics. There is simply
-no space for cholesteric pitch to develope.
b We assume that the molecules of nematic are parallel to the surface of the layer.

3. The topological classification of defects and solitons

The general scheme of topological classification of symmetry defects in an ordered
media can be presented in the following way [4-8, 11, 12, 14]:

Consider an infinite ordered media in a perfect state, which is a broken symmetry
state. For example, if we have an isotropic molecular liquid invariant under the group G
(in this case G is an Euclidean group in three dimensions, i.e., a semi-direct product of
rotational group O(3) and the three dimensional translational group R*—G = R®> A 0(3))

_and there is an isotropic to the nematic phase transition, then there appears a spontaneous
nematic aligment » which breaks G invariance.

Putting examples aside and saying it directly: the symmetry group is broken from G,
the group of physical laws, into H, subgroup of G Which is the invariance group of the
perfectly ordered state of the medium. In most cases G is simply a symmetry group of

~th e high temperature phase [6].
In the example given above H is the subgroup of operations of R® A O(3) which
.do not change the orientation of the nematic director [20].

The perfect state of our medium is represented by one point of the orbit G/H. When
the medium is not in the perfect state i.e., when it is distorted, we may still recognize a local

state (represented also by a point of G/H) and this state varies from one point of the medium
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to another. This situation can be described with the aid of a function ¢ which is defined
in the space of our medium and valued in the orbit G/H. The points or lines where ¢ is not
defined correspond to point or line defects.

A defect is called topologically stable if it is not possible to continuously extend @
over the defect. The trivial example of @ is ¢ = const. Such a function can always be
continuously extended — therefore it cannot define any stable defects. On the other hand
if ¢ is not homotopic to a constant (homotopic loosely speaking means —- continuously
deformable [1-3]) on an » dimensional sphere S” surrounding a d’, dimensional defect
(where d’+n—1 = d, dis the dimension of the medium [5]) then @ can not be continuously
extended inside the sphere and as a consequence the defect is topologically stable.

Generally speaking all possible ¢ can be divided into homotopy classes; the trivial
one, homotopic to a constant, and non trivial ones. The two different ¢ can be continuously
deformed the first into the second one, if and only if, they belong to the same single class.

The homotopy classes of the functions ¢ from S” to G/H form a group called the n-th
homotopy group or the #-th fundamental group I7,(G/H). Non-trivial elements of I1, are
in a one to one correspondence with types of stable d’ dimensional defects. There is one
exception: for II;. If II, is non-abelian, the correspondence is between the types of the
defects and conjugation classes of IT,. The simplest proof of the last statement can be found
in reference [12].

The meaning of the trivial element of I, is that the medium inside S” is in a perfect
state or in a state which can be obtained from the perfect state by continuous deformation
of the medium.

Summarizing all what was said above: if we want to have the topological classification
of defects, then the knowledge of homotopy groups I, is crucial.

In a very similar way we can define topological solitons [10-13] i.e., linear, planar
or three dimensional structures usually with a dense core (hence the name “point-like
solitons”), for which the function @ is defined everywhere (no defects) but is not homotopic
to a constant. However, the knowledge of IT, is not always sufficient, or, to say it more-
strictly, appropriate for the classification of solitons [13].

The next remark is about the computation of G/H. The orbit G/H can be identified
with the so called manifold of internal states ¥, which is also a topological space. Intuitively
speaking, we can think of ¥ as the manifold of all possible states the order parameter of
the medium can take. For example, if G/H = C, i.e., the group of all possible rotations
around one fixed axis, then C;, can be identified with a one dimensional sphere, ¥ = S*.
In the present paper the identification is simple and we do not need any strict mathematical
formulation (which can be found, for example, in reference [21D.

Before going to calculations let us make the very last remark about a different approach
to defect classification. Such a classification is by the Volterra processes {22, 23]; to each
Volterra process correspond one or several well known Burgers paths [6, 22, 23]. This
approach was shown to be equivalent to the topological classification in a brillant paper
by Kleman [6].

Now we will proceed to explicit calculations.
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3.1. Long range order
3.1.1. Nematics
In the case of a very thin layer of nematic we have
G =R*> A (D,®I), H=R?>A(D,;QI), (3.1

where we assume that the z axis is perpendicular to the layer and coincides with the:
axis C,.
The calculation of the manifold of internal states proceeds as follows:

G/H ~ DD, ~ C|Cy ~ P* ~ S, 3.2

where the axes C,, and C, are parallel with the axis z and where P* denotes the one dimen--
sional projective plane which is topologically equivalent to the circle S*.
It is well known that

O8YH =1, HO(SYH=2 Is"H=1%, (3.3)

where 1 denotes the trivial one-element group and Z denotes the additive group of integers.
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Fig. 3. The graphic representations of long range order point defects in a thin layer of nematic liquid.
crystal: a. the defect which can be labelled by the element 1/2 belonging to Z; the thick line denotes the:
line of cut and arrows denote the following deformation to the sample-after which the lines OA and OA’
will coincide with the line OB and the defect will be created; b. the defect —1 /2; the double arrow denotes.
the motion of extra material which has to be added to the sample to create the disclination —1/2. The-
meaning of other symbols is the same asin a; c. the defect +1 — the so called two dimensional hedgehog;
d. the same defect + [ — the configuration c can be continuously deformed into the configuration d; e. the-
defect —1. The topologically stable defects c-¢ in the three dimensional case correspond to line defects.
which are not topologically stable [12]
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(in this case the group of integers, and integers plus minus 1/2). The interpretation is as
follows [4-6, 10—14]:

II, =1 — no line defects,
II, # 1 — there are stable point defects,
II, =1 — no point-like solitons.

The graphic representation for the point defects is obvious [20] (see Fig. 3). The last thing
to consider is the existence of linear solitons. For simplicity let us demand the following
boundary conditions in the xy plane:
lim n(x, y) = (0,1). (3.4)
x| =
The vector n denotes the local nematic director which on the right and left hand sides of
the plane at infinity is supposed to be parallel with the axis y. Such boundary conditions
can be easily achieved in an experiment. (Let us note that for the nematic director n and
—n are equivalent.)

oo+ b/t oo -

Fig.- 4. The linear soliton -+1 in thin layer of a nematic liquid crystal. The shaded region where the nematic
director varies most quickly is called a core of the soliton. The core of the soliton in two dimensions or
a core of a wall soliton in three dimensions is nothing else but the so-called “domain walls”

The nontrivial soliton configurations of n can be distinguished by non trivial mappings
of the line, which crosses soliton, into S*. This line can be chosen to be the x axis. The
classes of topologically non-equivalent mappings:

[~o0, 0] —» St
with
{—o} and {+w} - (0,1) 3.5
can be identified with IT,(SY).
The graphical representation of linear soliton can be deduced from an example in
Fig. 4.
3.1.2. Smectic A,
This case is the simplest one:
G=R*A(D,®I), H-=0G. (3.6)

Therefore, ¥ consists of only one point. There are no defects and no solitons because all
the groups IT n are trivial.
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3.1.3. Smectic C, or smectic Az
When considering a single layer, C, and A; are identical. The group H is

H = R* A (C,®]) €N

and
G/H ~ DDy ~ Cy ~ S, (3.8)

where in (3.8) the two fold axis C, is perpendicular to the C,, axis which belongs to D,.
Therefore D, = C,, A C, and the quotient corresponds to C,.

The homotopy groups II,, are identical :Iike that in sectioni 3.1.1 and the classification
of defects and solitons is similar to that for nematics. The appearance of defects will however
be different, because in smectic C, the local order parameter can be represented by an
arrow, the tip of which is, for example, the end of a molecule which makes contact with

the glass bottom of a sample container.

LN N 2 <>z
ZIN AN - o Py
a) b) c) d)

Fig. 5. The picture of long range order point defects in'smectics Az and C,: a. the defect +1; b. the defect

—1; c. a =defect analogical to the defect —1/2 from Fig. 4 is not possible. It would result in at least one line

in the medium where the order parameter looks like it does in Fig. 5d. Such configurations, as from Fig. 5d,

at a closer look may either tirn out to be solitons with very dense cores (see Fig. 5¢) or are topologically
unstable [12]

The group II, = Z in this case consists only of integers. For the rest see Fig. 5. The
linear solitons in smectic C, look very similar to those for nematics. There is, however,
- different kind of solitons which corresponds to different boundary conditions:

lim n(x, y) = (0,1), lim n(x, y) = (0, —1), (39

X—> =0 X0

where n denotes the local order parameter in C, (the same notation as for nematics).
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Such solitons cannot be assigned to elements of any homotopy group [13]. As the
boundary conditions (3.9) look quite natural the existence of such solitons, unfortunately,
cannot be ignored.

Finally let us notice that long range order defects in smectics B are the same as in
smectics A, (that is there are none) and the same in smectics F as in smectics C,.

3.2. Short range order

For nematics, and smectics A,, C,, A; there is simply no short range order symmetry.
Therefore, we will consider only smectics B and F because only these are non-trivial.
3.2.1. Smectics B

The group H in two dimensions is

H = C22QI. (3.10)

The body centred elementary cell is represented in Fig. 6. Thé quotient G/H can be expressed
as (sec Appendix A):

G/H ~ (R|Z)* A (C,]Cs). (3.11)

Fig. 6. The elementary cell for smectic B. The cell dimensions are a and b respectively

Owing to the fact that the semi-direct product is also the topological product [14] we
obtain

IL((RJZ)* A (Co/C2) = IT(RIZ)* A IT,(C[/Cy).

The groups IT,(C,_/C,) are as we remember trivial with the exception that IT,(C/C,) = Z.
To calculate IT,(R/Z) we can use the theorem about the sequence of exact homo-
morphism [3, 12, 14]:-

. II,(R) > IT,(R|Z) > II(Z) = Z

and the result is that IT,(R/Z) = Z. The other I1,(R/Z) are trivial.
The final result is

Hy=1H, =1, I, = (Z" A Z™, (3.13)

where subscripts. tr, rot (translational, rotational) were added simply for convenience.
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Only short range order point defects can exist. These defects can combine translational
dislocations (Z") and disclinations (Z™) [22, 23]. As II, is certainly non-abelian whole
classes of conjugate elements of II, (whole classes of Burgers circuits) will correspond to
‘one type of defect (to one definite Volterra process). In reality disclinations (non-trivial
elements of Z™) require much energy and are associated with very large strains [23]. In

SEEE
VS
x =]

Fig. 7. A simple edge dislocation in smectic B

small short range structures which behave as super soft crystals they are not likely to occur.
We are left in this case only with translational dislocations (edge dislocations) which
require much less energy (see Fig. 7).

As for solitons, we will not look for them. The scale of length is too small.

3.2.2. Smectics F

The smectic Fis simply a tilted smectic B. The symmetry group is C2 ® I. The ele-
mentary cell is represented in Fig. 8. The quotient G/H is equal to

G/H = (R[Z)* A C,,.

The topological space is hence identical to the space for smectic B and IT; = (Z2 A Z™
This casé is formally the same as for smectic B. The difference would appear for disclina-

X
X—¥

Fig. 8. The qlementary cell for smectic F. The thick arrow shows the direction of the two fold axis

tions. We can remember that a similar situation occurred for long range order disclina-
tions in nematics and smectics C, which also had the same group Z.

However, as disclinations in smectics B and F are not likely to occur, all this discussion
is not necessary. To support this statement once more let us recall that the strain increases
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linearly with the distance from the centre of disclination [22, 23]. Therefore, in each new
“belt” of elementary cells surrounding the disclination there must appear many cracks
or edge dislocations (if the period of translation is to remain at least approximately con-
stant). Indeed, much more probable would be a transition of such a “would be disclina-
tion” to a completely disordered state [9].

4. Short summary

To sum up all the results of section 3 we collect them into Table 1I. Linear solitons
in thin flat layers of liquid crystals (long range order) do exist for nematics and smectics
A; and C,. For suitable boundary conditions at infinity, they can be classified by first
homotopy group which in all cases is isomorphic with Z.

I would like to thank Dr K. Sokalski who arosed my interest in the present problems.
Thanks are also due for his valuable comments.

TABLE II

Point defects in thin layers of liquid crystals. The topological classification by the first homotopy group

Liquid crystal Long range order Short range order
nematic | zZ 1
A, 1 ‘ 1
C, zZ 1
As VA 1
B 1 Z2AZ
F z Z’ANZ
APPENDIX A

Let us calculate the quotient G/H for
G =R>A(D,®I), H=2Z>nA(D,QI.

The international symbol for Z2 A D, is C222. Z? denotes the group of two dimensional
discrete translations.

1. First of all we will consider a simpler problem the solution of which will be useful
for further considerations:

D,=C,AC; and D,=CiACj,

where the upper indices z, x show that the appropriate symmetry axis coincides with the
z or with x axis respectively. Then

D, /D, ~ C%/C5 ~ P! ~ S!
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2. Now the group of matrices isomorphic with G and H are respectively:

IOOx] ¢ s
01 0 y| |—s ¢
Lo 0010 | 00
0 oo 1 0

where ¢ = cos p, s =

I +b
100 n 22|
2 sgn,
a—b
fOI‘H' 0 1 0 i s——=
: 2
0 0 1 0 L
0 0 0 1

-

where n, m are integers and sgn,, sgn, are
the elementary cell. *

3. The set of cosets G/H can be given by the generating elements {o, ..

G=oH+a,H+ ..

W

o [1
0 sgn;
0

1

0
0
1 sgny
0

sin u, v is an angle and where sgn; = +1;

sgn, sgn;,

Sgn,

% D

——

+1. The letters a, b denote the dimensions of

*s ak}

+ o H ;

o, is the trivial element of G. It is easy to check that the general form of « is

o =
0
0

where
csgn, = ¢,

X

n)

7 0,5]

[ R S
—_ O =

ssgn, = s,

X = %40 —Z«(a+b)+s 2 a-n),

~ ~
=y s

(a+b)+c—(a b).

From this we see that one coset is obtained from the elements of G by choosing a given
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angle p and x, y such that

- a+b+~éa—b
=0 — +s& —,
P 2
- a+b+~6a—b
= —50 —— +cf —
y 4 5 5

0<o<l, 0K<é< 1.

After this we take with this element all the other ones with the same y (or with 9’ = y+7)
and with x, y such that g, £ can be increased by any integer. All the just mentioned elements
together are the single element of the orbit G/H. This means that:

GIH ~ (R*|Z°) A (Cy[Cy).
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