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ELECTRIC-FIELD-VARIANT ORBITALS.
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The accuracy of the electric-field-variant (EFV) basis sets generated previously for
the calculation of atomic quadrupole polarizabilities is checked by computing the quadru-
pole shielding factors. By virtue of the form of the quadrupole shielding perturbation operator
the present calculations provide a check on the quality of the EFV bases at short electron-
nucleus distances. The EFV results obtained for the quadrupole shielding factors of 2- and
4-electron atomic systems are close to the most accurate coupled Hartree—Fock data. This
is achieved by using a single parameter whose numerical value is fixed during the variation
calculation of the quadrupole polarizability. The present results indicate that the EFV
bases provide a reliable description of both the inner and the outer regions of the pertur-
bed electron density distribution.

1. Introduction

The generation of the EFV basis sets which has been discussed in previous parts of
this series [1-3] is based on the consideration of the external electric field perturbation
[1, 2, 4]. Since the field-modified bases are by no means complete, they can be optimized
with respect to the properties which are to be computed. In the case of the éxternal electric
field gradient perturbation this optimization is carried out with regard to the diagonal
elements of the quadrupole polarizability tensor [2]. The corresponding perturbation

“operator [2,.3, 5] weights heavily the outer regions of the electron density distribution and
the EFV bases determined in this way may not be appropriate for the calculation of other
second-order properties related to the same perturbation.
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A very convenient check on the accuracy of the first-order perturbed wave functions
resulting from the multipole moment perturbation is provided by the quantity known
as the multipole shielding factor [6, 7]. The m-th component of the 2"-pole shielding per-
turbation operator f,'$'1)(7) for the i-th electron is given by

f,f?,;l)(,i) — 20,0, mo= =L =1+, -1, (1)

where Q\,,m(i) is the m-th component of the 2'-pole moment operator. In comparison with
the i-th electron 2'-pole moment perturbation operator

SO = — 01D 2

which defines the 2’-ptole polarizability tensor [7], the operator (1) is'large in the neigh-
bourhood of the atomic nucleus.

For a spherically symmetric system the rotational average of the 2%pole shielding
factor tensor can be defined as [7]

B = 2(¥i5" Zfz“’ D@ 12 €

and involves the first-order perturbed wave function ¥{%5°) determined for the perturba-
tion Z £%2@). Alternatively, one can also write

B = 2€ 'I’“’ Yl Z HeOm 1, “y

where P{%" is the first-order perturbed function for the corresponding component of
the 2-pole shielding perturbation. The equivalence of both these definitions of f; fol-
lows immediately from the so-called interchange theorem [8] provided the perturbed
functions are either exact or expanded in the same set of other functions [9]. In most
cases, however, the set of expansion functions is determined via the 2 -pole polarizability
calculation [10]. Then, if 8, is computed according to Eq. (3) its accuracy will reflect the
accuracy and flexibilityof variationally determined first- order perturbed function LAE

In the present paper the quadrupole shielding factors B, will be calculated for a series
of two- and four-electron atomic systems. We shall employ the first-order perturbed SCF
functions obtained in our recent calculations of the corresponding quadrupole polariz-
abilities [2, 3]. The computed values of B, will be then compared with the most accurate
SCF results reported in the literature. This comparison will be used to assess the quality
of the perturbed SCF EFV GTO and SCF EFV STO functions which follow from the
optimization' of the atomic quadrupole polarizabilities.

2. The method of calculation

All calculations reported in this paper refer to the SCF HF approximation and involve
the SCF perturbation theory for permrbatlon-dependent non-orthogonal bases [11].
The EFV bases which depend explicitly on the external electric field gradient are generated
from a given finite set of atomic functions {y:(r; a:(0)), x2(r; a>(0)), .o fm(?; @n(0))}
~ which is used®to describe the unperturbed system. The dependence on the field gradient:
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strength V = ¥, ¢ is introduced through a modification of the orbital exponent tensor
a; for each primitive function of the initial basis set [2, 3]. In the case of the GTO bases
the analytic form of this modification follows directly from the consideration of appropriat-
ely perturbed harmonic ascillator [2]. The generation of the EFV STO bases involves
additionally some integral transform representation of the exponential part of STO’s [3].
In order to make the V-dependent sets more flexible some variation parameter 4 has been
introduced [2, 3] and optlmlzed via the minimization of the second-order energy E( ;0
resultlng from the perturbation £ ¢ A9, The final EFV bases can be written as {y;(r; a(V, /1))},,,
‘where 1 denotes the optimized value of the parameter 4 and s is the basis set dimension.
It is important to stress that the value of m is the same for both the unperturbed and the
perturbed problem.

Since the EFV bases derived in this way depend only on the strength of the f20
perturbation the general formula for the mixed second-order energy ELsD = B, (see
‘Eq. (38) of Ref. [11]) simpliﬁed to

£(1,0)

ﬁ — E(l 1) =2Tr {f(l 1)R(0)+f(0 1)R(1 0)} (5)
‘where
8V, A oot (O0(V5 2
uts = ((222) igeine0) « (woois (222 ) @
. V=0 V=0
{£5% = <0, 0)| f5%1x,40, 0)), (7

Xi(()’ O) = Xi(rs ai(oa 0))5

:and R and Rg{g’) are the unperturbed and the first-order perturbed density matrices,
respectively [11]. Furthermore, in the case of the two- and four-electron atomic systems
.considered in the present paper the unperturbed bases will involve solely the s-type func-
‘tions. Thus, for symmetry reasons, one has
R§” =0, ®

.and

= 2 Tr f{5VR®. ©
According to the assumed analytic form of the EFV functions the derivatives which enter
Eq. (6) are linear in 1, and therefore the calculated shiclding factors will also linearly
-depend on this parameter. In this way f, = ﬁz(ﬁ) is intimately related to the quality of
‘the EFV results for the quadrupole polarizability of a given system. Once the value of
2 is known, the calculation of /J’Z(i) becomes relatively straightforward.

3. Results and discussion

We shall first discuss the results obtained by using the GTO basis sets. The corre-
-sponding calculations have been performed for a series of different GTO bases and enabled
us to study the m-dependence of f,. The initial V-independent GTO functions have
been taken from van Duijneveldt’s Report [12]. The corresponding values of 7 have already
Jbeen given in Part II of this series [2]. The calculations of f, have been carried out for
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H, He and Be. Also the hydrogen atom* has been included in this series, for it makes possible
a comparison of the EFV GTO data with the exact value of §, which is equal to % [7].

The results of our EFV GTO calculations are shown in Table 1. It should be pomted
out that if the GTO bases were not perturbation dependent, the results for B, would be
exactly equal to zero, since there are no V-independent GTO’s of appropriate symmetry.
Thus, our result obtained for the hydrogen atom by using the largest 10s EFV GTO set,
though it differs by ca. 10 per cent from the exact value of f,, should be considered as
fairly satisfactory. According to the data pfesented in Table II a similar conclusion applies
also to our results for He and Be. The EFV GTO data for the largest basis sets are not
too different from the corresponding accurate CHF values [13, 14]. The existing discrepan-
cies will be considered on discussing the EFV STO results.

TABLE 1
Quadrupole shielding factors for H, He and Be by using the EFV GTO bases. The convergence study

Quadrupole shielding factor (B2

|
Basis set dimension |

!

2 . H & He ‘ Be

2 0.3769 [ 0.4737 | o 1.0933

3 , 0.3500 0.4476 1.1175

4 0.3312 0.4252 1.1347

5 0.3181 0.4075 1.1425

6 0.3102 ‘ 0.3944 . 0.9999

7 0.3045 | 0.3860 | 09701

8 0.3019 0.3803 ' 0.9658

9 0.2993 0.3759 0.9675
10 0.2985 0.3738 ' 0.9412
11 - 0.9117
12 0.9107
13 | 0.9117

2 The original GTO bases taken from van Duijneveldt’s Report [12]. All entries refer to the corre-
sponding optimized values of the parameter 4 as given in Ref. [2]. See Text for'details.

The dependence of f, on the basis set size has a perfect monotonic behaviour for H
and He and follows that observed in the case of quadrupole polarizabilities [2]. It can be
seen from the data of Table I that presumably a little can be gained by a further increase
of the basis set size. Some non-monotonic variation of §, for Be appears to have its origin

_in incomplete optimization of the corresponding initial GTO bases [2]. The same has.
already been observed in our calculations of the quadrupole polarizability of Be [2].

On employing the EFV GTO bases the accuracy of f, can be affected by the following
two factors: (i) the inaccuracy of the first-order perturbed wave function, and (i) the inaccu-
racy of the unperturbed wave function. By the form of the perturbation operator f f 1)
one can expect that the accuracy of both functions in the neighbourhood of the nucleus
can be of principal 1mp0rtance However, it is known [15] that the GTO’s can hardly

! For one-electron systems the factor 2 in front of the trace in Eq. (9) should be omitted.
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TABLE 11

Quadrupole shielding factors. A comparison of the EFV results with the best literature data

This work?
Atom or ion Exact or accurate CHF values
EFV GTOY EFV STO®

| |
H _ 0209 : 0.296 0.3333 [7]¢
He . 0.374 0.368 : 0.388 [13], 0.396 [14]
Lit | | 0.225 0.248
Be?t 0.158
B3+ 0.125
Ca4+ 0.104 :
Be 0.912 0.779 | 0.77 [13]
B+ 0.528 0.55 -[13]
C2+ | 0.430 | 043 [13]

a Calculated for the optimized values of the parameter A as reported in Refs. [2, 3].
b The corresponding entries refer to the largest EFV GTO bases employed in the present paper.
See Table I for details. The GTO bases with optimized orbital exponents are not available for the ionic

systems.
¢ Exact zeroth-order function for H, 5 STO basis set for He, 4 STO bases for Lit through C*+, 6 STO
basis set for Be, and .5 STO bases for B+ and C?*+. The original STO bases taken from Clementi’s

Tables [16].
d Exact result.

simulate the so-called nuclear cusp condition and this seems to be one of the most important
reasons for the observed discrepancies. From this point of view the STO bases ars far
more appropriate. Thus, on vsing the EFV STO functions [3] one can almost eliminate
the effect of the inaccuracy of the zeroth-order solution.

The results of our EFV STO calculations for a series of two- and four-electron atoms
and ions are reported in Table II. The initial STO bases have been taken from Clementi’s
Tables [16] and the appropriate values of 4 have been determined in Part ITI of this series
[3]. One should notice that in the case of the hydrogen atom the EFV STO result corre-
sponds to the exact zeroth-order function and in this way provides a measure of the accu-
racy of the first-order perturbed EFV STO function. The discrepancy between the exact
and the EFV STO value of , amounts in this case to ca. 10 per cent, being similar to that
observed for the 10s EFV GTO set. However, far better results are obtained for the He
and Be isoelectronic series. The present values of 8, are only slightly different from the
best CHF data calculated by using thé ordinary expansion techniques [13].

One may wonder why the result for the hydrogen atom is poorer than those for two-
and four-electron systems, though in the latter case the finite STO bases give only approxi-
mate HF orbitals. In the case of the hydrogen atom, however, the flexibility of the first-
-order perturbed EFV STO function is diminished by the fact that there is only a single
unperturbed orbital. Using several STO’s for He- and Be-like systems provides a higher
flexibility of the EFV STO approach, though the corresponding zeroth-order orbitals
are to some extent inaccurate.
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Both the EFV GTO and the EFV STO values of f#, computed in this paper show that
the perturbed functions which follow from the variation of a single parameter A are also
quite reasonable in the region close to the atomic nucleus. According to our previous:
studies these functions have been shown to give the atomic quadrupole polarizabilities
of a very high accuracy [2, 3]. Thus, the present results provide a further confirmation
of the usefulness of the EFV bases for the calculation of second-order properties. This
conclusion can be of some importance for the calculation of the inhomogeneous eleciric
field effects on molecular properties [17, 18]. The use of EFV bases, for instance, for the
calculation of the electric field gradient effects on nuclear magnetic shielding constants
may lead to a substantial reduction of the basis set size problem [17, 18].

- The main purpose of this paper was to study the quality of the EFV bases at short
electron-nucleus distances. It has been shown that fairly reasonable results for f, can
be obtained without any further modification of previously proposed [2, 3] dependence
of the basis set functions on the field gradient strenght. However, in order to obtain very
accurate values of §, by using the EFV GTO bases some further extension of the method
appears to be desirable. The same applies to the EFV STO approach for the hydrogen
atom. The easiest extension of the present approach can be obtained by making a given
basis set simultaneously dependent on both perturbations. The dependence on the strength
of'the fX%" perturbation should involve lower powers of the electron-nucleus distance
than the dependence on fi¢o £ (1.0 Some pilot calculations performed for the hydrogen atom
indicate that by dividing the #-th order term in the expansion of y; by r" one obtains a con-
siderable improvement of f,. However, the explicit dependence of y; on the strength
of both perturbations makes all calculations more complicated. This should be rather
‘avoided if the EFV bases are to be applied in molecular problems.

Finally, let us mention that the idea of the EFV bases has originally been introduced
[1, 4] for the calculation of atomic and molecular electric dipole polarizabilities. The quantity
appropriate for checking the accuracy of these bases is known as the dipole shielding factor
[6, 7]. We have also performed similar calculations of the dipole shielding factor for H and
two- and four-electron atomic systems. For the hydrogen atom and the He-like series
both the EFV GTO and the EFV STO bases give results which are fairly close to the
corresponding exact dipole shielding factors [6, 7]. In the case of four-electron systems
the EFV values are, however, much poorer. On the other hand they represent a consider-
able improvement over the dipole shielding factors calculated by using what is known
as the multiplicative approximation for the first-order perturbed orbitals [9, 10]. Nonethe-
less, it appears that the basis set modification obtained for the homogeneous electric field
perturbation [1, 4] is less uniform for the whole range of electron-nucleus distances than
that deduced for the electric field gradient perturbation [2, 3].
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