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Using the quasi-potential form of the phase shifts in the JWKB approximation and
choosing a particular functional form to insure the correct behaviour of the ion-atom inter-
action we have constructed the potential through the Sabatier transformation. Numerical

. computations are given for the ion-atom case.

& 1. Introduction

The experimental physicist is often interested in deducing the scattering potential
V(r), directly from his measurements rather than predicting the cross section for assumed
forms of the poténtial. For this inversion problem there exist, in general, three kinds
of formalisms which can be summarized as follows:

In the first [1-5], using physical considerations, it is assumed that the JWKB
approximation is valid for the phase shifts and since the Sabatier transformation under
special assumptions is bijective, we can define a quasi-potential from which V(r) can be
derived. The phase-function is simulated by a several-parameter formula which enables
us to use the Weyl-transform,

) = fascon=—p = [ase(yprests

for the inversion problem.
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The second [6] gives a positive answer to the inversion problem for special sets
of phase shifts and potentials of the Yukawa class.

The third approach [7] can be considered as an extension to the inversion problem
of the Gel'fand Levitan formalism.

Because the first formalism is derived in a way that the numerical computations are
feasible, we use it for the case of elastic collisions between ions and noble gases.

In Section 2 we briefly describe the quasi-potential form of the phase shifts. In Section
3 numerical procedures and results are shown.

2. Quasi-potential formalism

In this Section we review briefly the quasipotential formalism. It will be suitable to
use the standard dimensionless abbreviations

E A7
x=L, A =kry, K=~—=E,
P &
V(r) 21
PG =~ B=(7)&a p=+DA W

where r,, is the value of r at the minimum of the potential V(r), e—the depth of the
minimum, p—the reduced mass, E = #2k?/(2p) — the kinetic relative energy, and /—the
angular momentum. Using the Sabatier transformation [8]

P(x)\'/?
f=x{1l— — , »
< K ) @
its inversion x = x(¢, K), and defining the energy-dependent quasi-potential
t, K P t, K
0(t, K) = 2K In [X( t )] = —Kln [1_ (X(k—))J’ )

we can write the well known JWKB-formula for the phase shifts 8} <2 as 6" = Ay(B, K)

1 o0
n%m=—ﬁfwwxwtﬁm- @
B

The problem of constructing an equivalent potential for a given set of phase shifts n(B, K)
is solved if we consider Eq. (4) as an integral equation. This can be then solved to give
the quasi-potential

2K ¢
o, K) = — jdﬁe(ﬁ, K)[(B*=7*)"", &)

T

0 .
where 0(8, K) = 2 —-n(B, K) and B is consider now as a continuous variable.

op



91

For a given K, the value of x corresponding to ¢ is obtained by writing the relation (3) as
x(t, K) = Q@K 2K 6)

Using Eq. (6), it is easy to construct the potential P(x), because according to Eq. (3)
P(x) = K(1 —e 20:EVK) . @)

The conditions under which this inversion procedure works are the following:
(@) V(r) < E, or P(x) < K, otherwise #(x, K) would be a complex function.
(b) The mapping x < ¢, defined by Eq. (2), must be bijective, otherwise the inverse function
x = x(t, K) is not unique. Of course, there is a critical value of K, say K = K, which puts
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Fig. 1. The mapping defined by Eq. (2) for different values of K taking a modified Morse potential

a lower limit to the application of the theory. In fact, the monotonous behaviour of
t = t(x, K), K a parameter, exists for K > K, and ceases for K < K,. This is shown
in Fig. 1 where we have plotted ¢ vs. x for different values of K taking a modified Morse
potential [9]; it can be seen that K, = 0.2.

3. Application to the ion-atom case

The potential of interaction between an ion and an atom shows a strong repulsion
at small distances, a minimum at equilibrium distance, and behaves according to the form
P(x) = —a/x* at large distances. The phase function 5(8, K) also has a typical behaviour
which can be simulated by an empirical function containing a small number of parameters
which may be evaluated by fitting the theoretical cross sections to results of experimental
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measurements. In this work we use the following ten-parameter formula for the phase-
-function:

1
n(p, K) = 2_12 [f1 +f2+f3];

fi = 5 (@p—b)e™”
1_?aﬁ_)e ’

o [G o o],

21 r Ty
_d 1 1 .
ia ((d1+ﬁ2)”2 : (d§+ﬁ2)”2>' B

The ““deflection function” 0(8, K) may be evaluated. Then, we use the Weyl transform
and obtain from Eq. (5) an explicit form for the quasi-potential

0(t,K) = Qo+Q1+@s,
Qo = (a+yb)Ko(yt)—aytK,(y1),

0, = —(Cle_hzrz . Cze_yzm):

1 1

=d{-— - ——1, 9
< <d1+t2 d2+t2) 2
where Ky(y) and K;(») are modified Bessel functions of the second kind [10]. Of course,
the quasi-potential Q(z, K) has by fixed K the same typical behaviour as the interaction
potential: Q, sketches the strong “repulsion” at small ¢, Q, represents a potential well,
where the parameters define the form and deepness of the well, and Q3 determine the

behaviour for large ¢. Expansion shows that

_d(dy—dy) | d(di—d3)  d(d3—d)

= Yy i N Ny
o £+ £ £

which corresponds to the polarization and higher multipole interactions.

From Eq. (3) it is seen that the quasi-potential Q(¢, K) depends on K at difference
in the potential of P(x). This means that the parameters y, a, b, ¢, V15 €2, Y25 > 415 @3 also
depend on the energy. To obtain information about this energy dependence, we have
proceeded as follows:

(@) Using Eqgs. (3) and (4), we have calculated for different energies the set of phase shifts
n(B, K) as a function of f for a known potential P(x) [9].

(b) For each K we have then evaluated the parameters by fitting the theoretical #(B, K)
to the ten-parameter formula Eq. (8). The results are shown in Table 1.

Figs. 2-6 show the influence of the parameters on the resulting quasi-potential. A suit-
able choice of parameters allows us to shift the minimum, to influence the curvature,
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TABLE 1
Energy dependence of the parameters in Eq. (8)*

10eV 9eV 7eV } 5eV J 4eV
Y 5.5 5.5 5.0 5.0 | 4.99
a 5.7 7.0 7.6 8.0 8.4
b 5.7 5.0 4.5 3.8 3.0
cy 2.2 2.2 2.2 2.2 2.2
Yi 0.73 0.71 0.70 0.68 0.68
ca 3.6 3.6 3.6 3.65 3.68
V2 1.41 1.40 1.35 1.30 1.27

* The parameters d, dy, d, are omitted since the present example is not very sensitive to these
parameters.
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Fig. 3. The influence of parameter & on the quasi-potential
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Fig. 5. The influence of parameter C; on the quasi-potertial

Q

1

e et

7
g2 127
----- 1.30
—— 13
ot 140

-1

Fig, 6. The influence of parameter ; on the quasi-potential
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to adjust the width of the quasi-potential well and to modify the steepness of the repulsive
slope at small values of 7. Fig. 7 shows the quasi-potential for different energies. The
behaviour shows that for increasing values of K, the quasipotential tends to be close to the
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Fig. 7. The dependence of the quasi-potential on the energy E [e.V]
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Fig. 8. Cross-section for two different values of the parameter y,

potential P(x), which can be seen in Eq. (3). Fig. 8 gives the behavior of the cross-
-section for two different values of the parameter y,, which gives the deepness of the well.
Finally we find that for practical evaluations, the ten-parameter formulae (9) may

be used to reproduce the experimental cross-section so that under the conditions described
above the phase-function can be deduced.
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Our program is now being used for the evaluation of scattering data obtained by
our experimental groups in atom collisions. All the programs are written in PL/1. At
present, we are extending this formalism to processes such as electronic transitions ‘in
ion-atom collisions which take place via a crossing of two potential curves.

The authors wish to thank Prof. H. Kriiger of the University Kaiserslautern, W. Ger-
many for valuable advice during his stay at our department. We also thank D. Rojas for
helpful discussions with this paper. Acknowledgement is made to the Computer Center
of the “Universidad Nacional”.

REFERENCES

[1] J. A. Wheeler, Phys. Rev. 99, 630 (1955).

[2]1 G. Vollmer, H. Kriiger, Phys. Letr. A28, 165 (1968).

[3] W. H. Miller, J. Chem. Phys. 51, 3631 (1969).

[41 G. Vollmer, Z. Phys. 226, 426 (1969).

[51 P. C. Sabatier, Phys. Rev. A8, 589 (1973).

[6] A. Martin, G. Targonski, Nuovo Cimento 20, 1182 (1961).

[71 P. C. Sabatier, J. Math. Phys. 13, 675 (1972).

[8] P. C. Sabatier, Nuovo Cimento 37, 1180 (1965).

[9] H. U. Mittman, H. P. Weisse, A. Ding, A. Henglein, Z. Naturforsch. 26a, 1112, 1122, 1282
(1971).

[10] M. Abramowitz, I. A. Stegun, Handbook of Math. Functions, Dover Public. Inc., New York 1965.



