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The problem of the most efficient perturbation calculation of the correlation contribu-
tions to atomic and molecular properties is discussed. The method which is based on the
coupled Hartree-Fock (CHF) perturbation theory appears to be the most promising one.
The CHF-based perturbation theory of correlation effects is applied to the calculation of
the second-order correlation contributions to the electric dipole polarizabilities of He, Be
and Ne. The numerical approach employed in this paper consists in computing first the
electric-field-dependent SCF functions. Then, the field dependent second-order correlation
energy is calculated. The electric dipole polarizabilities, accurate through the second-order
in correlation, are obtained via the numerical differentiation of the field-dependent energies
with respect to the external electric field strength. In order to avoid the use of very large
‘basis sets the so-called electric-field-variant (EFV) orbitals are employed in the present study.
The CHEF results obtained in this paper are of the same accuracy as the best literature data,
On addition of the second-order correlation correction the final values of the electric dipole
polarizability differ from the accurate or experimental results by less than a few per cent.

1. Introduction

In spite of a variety of very promising and successful applications [1-5] of the coupled
Hartree-Fock perturbation theory [6-10] to the calculation of electric and magnetic
properties of many-electron systems [1, 2, 11] it is obvious that the theory needs to be
corrected for the electron correlation effects. Fortunately enough the correlation errors
of the CHF results are most frequently relatively small [2, 12-14]. However, in some cases
[11-17] the electron correlation effects can be of ultimate importance.

The correlation effects can be accounted for either variationally by using appropriately
selected form of the approximate wave function [12, 16, 18-22] or perturbationally [23-26].
As already mentioned, the correlation corrections to the CHF values of atomic and mole-
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cular properties’are usually fairly small. Thus, one can anticipate that the perturbation
methods are perfectly suited for this purpose.

The perturbation theory of the correlation corrections to the CHF results has recently
been discussed in detail by the present author [27]. The most important features of this
theory will be briefly surveyed in Section 2. It has been pointed out previously [27, 28]
that the CHF-based perturbation theory of the electron correlation effects should be quite
efficient numerically already in relatively low orders with respect to the correlation per-
turbation. To illustrate this point we have performed the appropriate calculations for the
electric dipole polarizability of He, Be and Ne. The computational methods used in the
present study are described in Section 3 and the results are discussed in Section 4. A sum-
mary and conclusions with regard to the method employed in this paper will be presented
in Section 5.

2. Correlation corrections to the n-th order perturbed CHF energies

Let H® bé the total electronic Hamiltonian of a given unperturbed many-electron
system

_H(O) . »Zf(O)(i)_i_ 2 ri; 1’ (1)

i<j
where the first term represents the one-electron part and the second operator refers to
electron-electron repulsion. The perturbation by some external field of the strength p,

i = 1 310, @

is assumed to be of one-electron character [11]. The total Hamiltonian of the perturbed
system becomes then

H = H(w) = HO+pH"?, 3)
so that the exact solutions of the Schrédinger equation ‘
H(w¥ (W) = EW¥1) @

are p-dependent [11, 29].

‘The notion of the correlation effects has its origin in the application of the Hartree—
—Fock (HF) approximation to the exact solution ¥Y(u). Let us suppose therefore that we
know the HF solution corresponding to the Hamiltonian (3), i.e.

Hye(0)¥ue() = Exe() V(i) ‘ (5)
where Wyp(y) is the u-dependent many-electron HF wave function of a given'perturbe_d'
system and

Hyp(p) = 3. h(is )+ C(w) , (©)

is the p-dependent many-electron HF Hamiltonian [30-32]. The constant C(u) [31] is
determined. by the condition that Eyg(yt) represents the total HF energy of the perturbed
system for A(i; u) being the one-electron p-dependent HE operators

h(i; ) = fO0) +pf @O+ B, )
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where v(i; 1) denotes the pu-dependent HF potential for the i-th electron [30]. The HF
wave function Yyp(p) is expressed in terms of u-dependent spinorbitals u(i; 1) which.
follow from the solution of the HF equations

h(is wuy(is 1) = e,(1u,(i; w). (8)
On expanding these equations in a power series in u [6-10] one obtains the well-known

perturbation equations of the CHF theory.
Owing to the introduction of the HF approximation the total Hamiltonian (3) can be

partitioned in the following way

H = H(u,v) = Hyp()+vH (), )
where
HOG = ¥ i~ Vi)~ C(1) (10)
and e ’
Var(p) = Z o(is p). ' (11),

The operator (10) represents the inaccuracy of the p-dependent HF approximation and'
is referred to as the p-dependent correlation perturbation. The corresponding perturba-
tion parameter v has only a formal significance [33] and allows for the v-expansion of"
the exact perturbed energy

o0

E(u) = E(u,v) = Y v"E™(), (12).

m=0
where E™(u), m = 1, is the m-th order p-dependent correlation correction to the HF:
energy Eyp(n) = E(w).
By using the Brueckner-Goldstone “linked cluster” expansion formula [24, 34-36]
we can define E™(y) as ‘

E™ () = (Pue@) HOG ReeWHO@Y" | Wue(dr,  m = 1,2,...  (13).

where
1

il HHF(N) EHF(,U) (14).

and L means that only the “linked” [34-36] terms are to be included in the diagrammatic -
expansion of Eq. (13). It is worth attention that in contrast to the standard form of the .
m-th order correlation correction [36, 37] the diagrammatic expansion of Eq. (13), will
involve the u-dependent hole and particle lines [27, 38], i.e. the hole and particle states
which follow from the solution of the p-dependent HF equations (8). However, the general
form of the correlation energy diagrams [24, 36, 37] remains the same as in the case of the.
p-independent problem [38].
Obviously, the final goal of the perturbation treatment of Eq. (4) is the calculation
of the n-th order perturbed energies £ which are defined by the following expansion

E = E(,u) - z ,unE(") = Z ,u"E(")(V). (15)
n=0 n=0
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The exact n-th order perturbed energies are the quantities which can be directly related
to what is called the n-th order atomic and molecular properties [11}. As indicated in the
r.h.s. of Eq. (15) these energies depend formally on the correlation perturbation (10).
Thus, the total perturbed energy E = E(u) = E(u, v) can be alternatively expanded in the
double-perturbation series

E(g,vy=Y % wymE®™, (16)

n=0 m=0

where E®™™ is referred to as the m-th order correlation correction (m = 1) to the n-th
order perturbed energy (n > 1) [31]. Since

E™() = Y wE®™ . (17)
n=0 .
we obtain from Eq. (13) the following general formula
- 1[e" -
E®™ = —| — E("’)(u)} . (18)
n!| op =0

Its diagrammatic expansion has already been analysed and was shown to involve solely
the so-called true correlation effects. The self-consistency effects (the apparent correlation
effects) are completely accounted for at the HF level [27, 39], i.e. they contribute to the
n-th order perturbed CHF energies E™® = EGle which follow from the expansion of
the p-dependent HF energy

Eyr(1) = ES)F)*‘ Z] .unEglI?IF' (19

The perturbation theory of the correlation effects can also be developed with reference
to the HF approximation for the unperturbed system [23, 24, 31, 40]. Then, however,
what should be called the m-th order correlation correction will in general involve simulta-
neously both the apparent correlation effects (i.e. the self-consistency effects) and the true
correlation contributions [27]. The absence of the former ones in Eq. (18) for m > 1 shows
that the present theory is developed at the HF level for both the unperturbed and the
perturbed system. A detailed discussion of this problem has already been presented in
our previous paper [27]. '

It is of note that the CHF-based perturbation theory of the correlation contributions
as formulated in this paper suggests also a convenient ‘computational scheme for the
calculation of E&), and E®™. Obviously, one can in principle use what is called the analytic
approach and calculate directly all the diagrams which contribute to these energies. Far
more convenient, however, is a completely numerical approach based on Egs. (5), (8) and
(18). It means that in the first step of our calculations we must calculate the field-dependent
HF orbitals, i.e. the HF orbitals which follow from the HF equations for some selected
numerical values of the field strength p. The next step consists in calculating the correlation
energies (13) by using the p-dependent HF functions. Finally, the analytic differentiation
with respect to u is replaced by the numerical evaluation of the appropriate derivatives
of Epp(y) and E(y). This will give the n-th order CHF energies and the m-th order
correlation corrections to them.
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The numerical scheme outlined here follows the so-called finite-field perturbation
methods [12, 13, 16, 32, 41, 42]. Although these methods are certainly not as elegant as the
analytic schemes based on the appropriate spectral expansions [6-10, 21, 24, 39], they
are definitely more convenient from the computational point of view. It should be pointed
out that on using the numerical approach one can virtually employ the standard programs
which are used for unperturbed calculations.

So far, the theory was developed under the assumption that the exact, i.e. the HF
solutions of Eq. (8) are available: The practical calculations are, however, performed by
using the finite basis set approximation, so that the correlation corrections are computed
relative to the SCF perturbed energies. Furthermore, the finite SCF bases are also employed
for the calculation of diagrammatic contributions to Eq. (13) [43-46]. The difference
between the HF and the SCF functions can be accounted for e.g. perturbationally [47, 48].
However, it becomes of minor importance for large bases which are necessary in highly
accurate calculations [47]. For this reason the present finite basis set (SCF) calculations
will be identified with the HF data.

" According to previously reported analysis of the ‘CHF-based perturbation method
for the calculation of the correlation corrections to ES&j it is expected that most of the
correlation effects should be recovered already for relatively small values of m. It is of
note that within the present formulation

E™D =0 (20)

for any value of . This is the result of the HF approximation used for both the unperturbed
and the perturbed system [25, 27, 28]. Thus, the first nonvanishing corrections will be of
the second-order in correlation.

It follows from our previous preliminary studies [25, 28] that E®™? should account
for the major portion of the correlation corrections to E&).. This conclusion has also been
supported by the analysis [27] of the recent numerical data of Ttagaki and Saika [40].
Thus, the calculations reported in this paper are restricted to m = 2 and computmg E™2
means the calculation of the appropriate derivative of the lowest correlation energy diagram
[25, 27, 38]. The theory is applied to the calculation of the second-order correlation correc-
tions to the electric dipole polarizabilities of He, Be and Ne and the corresponding computa-
tional details are considered in the next section.

3. Second—order correlation corrections to the CHF polarizabilities. Methods of calculation
and computational details

The electric dipole polarizability tensor corresponds to the system response to the
external perturbation by a static homogeneous electric field in the second-order with
respect to the field strength. For spherically symmetric systems the average dipole polariza-
bility can be defined as [11]

o = —2E®), 1)

where the exact second-order energy £® is calculated for some arbitrary direction of the
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external electric field. Similarly, in the CHF approximation one obtains
0@ = tgup = —2EG = —2E*? (22)
while the second-order correlation correction to acup is given by
«? = —2E®?, (23)
According to the discussion presented in the previous section it is expected that
o = o +a®. (24)

As already mentioned, the present calculations have been carried out by using the
finite basis set approximation. This approximation is fairly standard in the case of the
CHF method [7-10]. Moreover, it has also proved to be quite reliable for the calculation
of the ordinary correlation energies by using the many-body perturbation theory approaches
[43-46, 49-52]. On computing ‘the correlation corrections to the CHF polarizabilities the
basis set requirements become, however, far more severe; a given basis set must simulta-
neously account for both the electric field perturbation [12, 13, 53, 54] and the correlation
perturbation. It is already in the case of the CHF scheme that in order to obtain the electric
dipole polarizabilities close to the corresponding HF limits one has to employ quite large
bases [12, 13, 54]. Their further extension is likely to be necessary when computing the
appropriate correlation corrections.

The problem of the basis set choice can be to some extent circumvented by using the
functional bases which depend explicitly on the external electric field- strength [55,. 56].
The basic idea behind this approach is that the basis set size is kept the same for both the
unperturbed and the electric-field-perturbed system. The electric field introduces some
inherent modification of the analytic form of the basis set functions. In the case of Gaussian
bases the pertinent modification was deduced by the consideration of the electric-field-
-perturbed harmonic oscillator problem [55].

Suppose that the unperturbed system is properly described at the SCF HF level by
the M-dimensional basis set {x:(r; o1, 0) y2(¥s ttz, 0), ..os Xar(F 5 0lnss 0)}, where o; denotes
the orbital exponent and 0 means that the electric field strength F = p is equal to zero.
Since we shall deal with atomic systems the direction of the external electric field is com-
pletely arbitrary and F can be assumed e.g. to represent the field strength along the z axis.
The so-called electric-field-variant (EFV) basis set is obtained from the set {x{r; o, 0)}
by making each basis function explicitly dependent on the electric field strength. In the
case of GTO’s the relevant EFV GTO bases are obtained by shifting the origin of each
Gaussian towards the electric field direction by the amount which is proportional to the
electric field strength and the inverse square of the orbital exponent [55, 56]. The shift
is scaled by some parameter A whose value is determined variationally through the minimi-
zation of the second-order CHF energy [57, 58]. Let us denote the optimum value of this
parameter by 7 [55-58]. Thus, the EFV GTO basis set which is optimized with respect
to the CHF polarizability value can be represented by

(s oy 4y B} | 25
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Its size is exactly the same as that of the original GTO set and the parameter A is assumed
to be the same for all basis functions [55]. The CHF calculations performed with the aid
of the EFV GTO functions have proved to be very efficient and accurate [59-61].
Once the parameter 1 is evaluated one can calculate the field dependent SCF HF
spinorbitals u,(F, 1) (see Eq. (8)) by using the ordinary SCF methods [30, 32, 41, 57].
The virtual spinorbitals can be used then to compute the field-dependent second-order
correlation energy E(F, 1). According to Eq. (13) we obtain a rather standard result
[24, 36, 37, 62]

A 1
E®F, )= -1 g —_—
— qu,ij(F’ /1)
1,7 p.q

x <15 F, Dug2; F, Diry (1= Pyy) luy(1; F, Du2; F, D% (26)
where

Dyyif(F, 1) = e(F, D+ e,(F, D) —e(F, D—e,(F, J). 7

The correlation correction E®?(1) follows then from the numerical differentiation of

Eq. (26) with respect to F. The value of 2 is assumed to be the same as that determined

from the second-order CHF energy calculations. This completes a general description of
' the computational procedure employed in the present paper.

The use of the EFV GTO bases changes the strategy of the basis set choice. Since the
external electric field effects are accounted for via the intrinsic modification of the original
GTO set, one should only take care that a given GTO basis set provides a substantial
portion of the second-order (field-independent) correlation energy. If so, one can expect
that also the correction E?X(]) can be predicted with satisfactory accuracy. It follows
therefore that the calculations of o® should be preceded by the qualification of the selected
GTO bases with respect to the field-independent second-order correlation energy E®)0, 0),
i.e. the energy obtained from Eq. (26) for F= 1 = 0.

In the present paper the field-independent calculations have been carried out by using
the GTO bases comprising s, p, and d orbitals. A complete description of these basis
sets for He, Be and Ne is given in Table 1. In general they have been constructed by aug-
menting the optimized GTO bases of van Duijneveldt [63] with some p and d orbitals
whose exponents are shown in Table I. The influence of the basis set extension on the
computed second-order correlation energy has been studied for He.

The field independent results for the total SCF energy and the second-order correlation
energy are shown in Table I as well. They are compared with the so-called HF limits of
the SCF energies [63, 64, 67] and the best available values of E®0, 0), respectively. The
SCF energies calculated in this paper are very close to the corresponding HF limits and
according to our previous conclusions [56, 60] one can expect that replacing the GTO’s
by the A-optimized EFV GTO’s should lead to near-HF values of electric dipole polarizabi-
lities.
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TABLE 1

GTO basis sets for He, Be and Ne. Results'qf the field-independent calculations of the SCF energy (Escp)
and the second-order correlation energy (E™ (0, 0)). All energies in a.u.

Atom ! Basis set | Contraction coefficients (orbital exponents) Escr ‘ E® (0,0)
| |
He A) | s: (1057 L 2861673 | —0.03350
p: 0.03429(15.0)+0.096302(5.5) ‘
| | 40.212006(2.13), 1.0(0.85), 1.0(0.343), |
| 1.0(0.139) | -
e 1.0(1.0)
‘ ® s (10/5° : —2.861673 ~0.03482
p: 0.03429(30.56) +0.096302(11.05),
| 1.0(4.26), 1.0(1.70), 1.0(0.68), 1.0(0.277)
| d: 1.0(1.70), 1.0(0.68) |
Reference results —2.861680° —0.03736°
Be @ |s:oaynd —14.572954 ‘ —0.06659
p: 0.034842(134.447)+0.1058375(56.7443), 0
0.2460986(17.4427) +0.3867763(6.922), | |
1.0(2.904), 1.0(1.217), 1.0(0.5154), ; o
| 1.0(0.2083), 1.0(0.0848) |
d: 0.2724444(0.5154) +0.2876675(0.0848),
| 1.0(0.2083)
. ' Reference results | —14.573022° —0.07629°
Ne (A) | s (13/7)% 1.00.114065) | —128.541511 | —0.2797
! p: 8/, 1.0(0.064715) ' |
d: 0.05665(24.346) +0.166455(8.946),
0.306363(3.5588) +0.365458(1.4462). )
\ | 1.0(0.5863) ‘I
| Reference results | —128.54708 |  —0.3879%

2 10s optimized set of van Duijneveldt [63] contracted to 5s set. Segmented contraction scheme:
6,1,1,1,1). , ,

b Analytié SCF result close to the HF limit [64].

© The best literature value of the second-order correlation energy by Malinowski et al. [65]. See also
Ref. [66]. »

4 135 optimized set of van Duijneveldt [63] contracted to Ts set. Segmented contraction scheme:
%,2,1,1,1,1, 1. .

¢ 13s optimized set of van Duijneveldt [63] contracted to 7s set. Segmented contraction scheme:
G,2,2,1,1,1, 1.

f 8p optimized set of van Duijneveldt [63] contracted to 4p set. Segmented contraction scheme:
“4,2,1, 1.

g Estimated HF limit [67].

h The best literature value of the-second-order correlation energy by Jankowski et al. [68]. See also
Refs. [69, 70].

The field-independent second-order correlation cnergies are, for obvious reasons,
poorer than the best values reported in the literature [65, 66, 68~71]. Nonetheless in the
case of He the set B recovers more than 90 per cent of the accurate value of E®(0, 0).
Nearly the same portion of the second-order correlation energy is also obtained for Be.
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For both these atoms the difference between the present and the accurate values of
E®X0, 0) is mainly due to the neglect of higher than s-p and s-d excitations. The basis set
employed in our calculations for Ne is relatively much smaller than those used for He
and Be and gives only ca. 70 per cent of the accurate value of the field-independent second-
-order correlation energy. Using larger bases would be certainly desirable in the case of
Ne. However, this would lead to a considerable increase of the computer time spent on
the 4-index transformation of two-electron integrals. The basis set employed in the present
study for Ne represents therefore a compromise between the accuracy of the computed
second-order correlation energy and the corresponding computational effort.

The successive step of our calculations consists of the determination of the optimized
value 1 of the parameter A which defines the EFV GTO bases. This parameter has been
determined by the minimization of the i-dependent second-order CHF energy E&(1)
with respect to 1. The numerical technique used for this purpose has already been described
in our previous papers [57, 61]. In.all calculations reported in this paper the external
electric field strength F = 0.005 a.u. has been used. This value is small enough so that
Eyur(F, 2)— Eyg(0,0) is only slightly contaminated by the: highér than quadratic terms
in F. Simultaneously, F = 0.005 is still large enough to make this difference numerically
meaningful. The final results of the present EFV GTO calculations of the CHF polarizability
of He, Be and Ne and the corresponding values of i-are presented in Section 4.

- The field dependent SCF spinorbitals have been then recalculated for the optimized
values of the parameter A and used to evaluate the second-order correlation energy (26).
As already mentioned its numerical differentiation with respect to F gives the second-
-order correlation correction to the CHF polarizability of a given system. The corresponding
numerical results are shown in the next section.

4. Results and discussion

The results of the finite-field perturbation calculation of the CHF polarizabilities
are summarized in Table II. Both the ordinary GTO (/. = 0) and the optimized EFV GTO
(4 = 2) results for the CHF polarizabilities are shown. They are compared with the best
CHEF results reported in the literature. This comparlson clearly indicates a very high
accuracy of the EFV GTO CHF scheme. :

The second-order correlation corrections (23) calculated for /1 = J and the estimates
of the total polarizability following from Eq. (24) are given in Table I11. They are compared
with the recommended (either experimental or theoretical) polarizability values which
bave recently been compiled by Miller and Bederson [72]. It can be seen that the estimate
of the total polarizability as given by Eq. (24) is fairly close to the accurate values. It
should be pointed out that the present finite GTO bases are not sufficiently large to give
the accurate values of the second-order correlation energy E(0, 0). Thus, one can expect
that on a further increase of the basis set size the correlation corrections to the CHF polar-
izabilities should also increase. This is illustrated by the data for He obtained with two
different basis sets. The set (A) has been selected mostly by using the criteria appropriate
for the CHF polarizability calculations. The second set (B) gives poorer value of the
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TABLE 1II
CHF electric dipole polarizabilities of He, Be and Ne (n a.u.)®
He Be Ne
Basis set - —— ==
A (B) (A) (A)
| . || .
This work | |
dcnr(0)® 1.321 ' 1.256 41.46 1.885
A° . 0.0637 | 0.1397 ‘ 0.1403 0.1184
oeur(A)d 1.321 1.322 45.63 2.368
. | e | . ——
Best CHF® 1.32 [73] ‘ 45.63 [13] 2.368 [12]

a1 a.u. of polarizability = 0.148185 A® [74].

b finite-field perturbation results obtained by using the field-independent GTO bases (1 = 0).

© Optimized value of 4 for the appropriate EFV GTO bases derived from the basis sets of Table 1.

d Finite-field perturbation results obtained by using the EFV GTO bases with 4 = 4.

¢ These are presumably the best CHF results obtained by using the field-independent basis sets.
For other data see Refs. [12, 13, 75]. g

.

TABLE IIX

Results of the EEV GTO calculations of the second-order correlation correction to the CHF polarizability
of He, Be and Ne. All data in a.u®

He | Be Ne
Basis set — — =
e ® ) )
This work? ,

@ (3) 0.0372 | 0.0390 —6.16 0.190
ocrr(A)+a® (1) 1.359 1.361 39.47 2.558
Recommended accurate

value [72]
o 1.38 37.8 2.67

a See Footnote a to Table IL ’
b Calculated for the optimized values of 1 given in Table IL

J-independent polarizability (Table IT) but is more efficient with regard to the calculation
of E(0, 0) (Table I). The optimization of A for this basis set leads to near-HF value of
the CHF polarizability and simultaneously increases the value of aP().

It is known that the whole of the polarizability of a given system is primarily defined
by the contribution of the outer electronic shells. Thus, the second-order correlation
corrections should also depend on the quality of a given basis set with respect to its ability
to provide correct values of the second-order pair energies for outer shells. The second-
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TABLE 1V

Second-order pair correlation energies and the pair contributions to the second-order correlation correction
to the CHF polarizability of Be and Ne

Pair contribution LTS
Atom to? — — = —
| (s.19) | (5,29 | @5.29 | Us.20) | @s,20) | Gp.2p)
Be E® (0, 0) This work —’0.03394| —0.00487 —0.02781’
Accurate [65] ~0.04032, —0.00548 —0.03049|
«® (1)  This work —0.90 —0.86 —4.40 |
Ne E® (0, 0) This work —0.01713 —0.00270 —0.00880 —0.01423' —0.05484 —0.18195
Accurate [68] —0.04022) —0.00556 —0.01202 —0.02217 —0.08715 —0.22080
a® (7)  This work ~0.009 | —0.002 | 0.003 | —0.014 | 0.038 0.173

2 All data in a.u. For definitions see text.

-order pair energies calculated in this paper for Be and Ne are compared in Table TV
with the most accurate data of Jankowski et al. [65, 68]. Also the pair contributions to the
second-order corrections to the CHF polarizability are shown.

In the case of Be the inaccuracy of the present value of the ficld-independent pair
energy for the outer (2s, 2s) pair amounts to less than 10 per cent. This result is similar to
that obtained for the (1s, 1s) pair in He (see Table1). For Ne the second-order correlation
correction to the CHF polarizability is mostly due to (2p, 2p) pairs. However, the basis
set employed in this paper gives only ca. 80 per cent of the corresponding pair correlation
energy. It is therefore expected that extending the basis set for Ne should result in higher
values of the (2p, 2p) contribution to «‘®(1). Nonetheless, in spite of relatively small basis
set the final estimate of « calculated in the present paper for Ne is only by ca. 4 per cent
lower than the recommended value [72].

The conclusion that improving the E?(0, 0) values by the appropriate selection of
the basis set functions leads to the improvement of the total polarizability estimates accord-
ing to Eq. (24) is also confirmed by our previous studies for the Be atom [25]. Virtually
the same behaviour of the second-order correlation contribution of the CHF polarizability
has also been calculated for the fluoride ion [28].

5. Summary and conclusions

The calculations' reported in this paper provide the numerical illustration of our
recent proposal concerning the calculation of the true correlation contributions to atomic
and molecular properties [27]. According to the proposed computational scheme the CHF
results are corrected for the correlation effects through the second-order in the correlation
perturbation. Since the present method is based on the CHF approximation no pure-
-apparent correlation diagrams will enter the diagrammatic expansion for E®™, m > 1.
All the apparent correlation energy diagrams which have an open-chain structure [27, 39]
are already accounted for at the CHF level.
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The numerical calculations for He, Be and Ne indicate that the estimate of the accurate
polarizability can be obtained according to Eq: (24). It means that for a variety of practical
purposes, e.g. for the estimation of the long-range interaction energies [76, 771, the cor-
responding calculations can be reduced to the evaluation of Eq. (26) at some selected
values of the external electric field. '

It is suggested that all calculations should be performed by using the numerical finite-
-field perturbation approach [12, 13, 32, 41, 42]. This makes the computational scheme
relatively simple; all calculations can be easily carried out by using the standard programs
for the calculations of the SCF wave functions and the ordinary second-order correlation
energies [24]. Tt should be also pointed out that the calculation of the higher-order correla-
tion contributions can be performed in a similar way, i.e. by using the routines for the
calculation of ‘the higher-order correlation energies [52]. However, in comparison with
the field-independent calculations a much higher accuracy is required in order to obtain
meaningful results of the numerical differentiation of the field-dependent energies. Com-
puting the higher-order correlation contributions to atomic and molecular properties
calculated in the CHF approximation will be unavoidable if the HF approximation gives
a rather poor estimate of the corresponc_ling accurate values [78, 79].

The use of the 4-index transformation program prepared by Dr. M. Jaszunski is
gratefully acknowledged. '

REFERENCES

[11 W. N. Lipscomb, Adv. Magn. Res. 2, 138 (1966).
[2] W. N. Lipscomb, in MTP International Review of Science, Physical Chemistry. Series One. Theoretical
Chemistry, Eds.” A. D. Buckingham, W. Byers Brown, vol. 1, p. 167.
[3] P. Lazzeretti, B. Cadioli, U. Pincelli, Int. J. Quantum Chem. 10, 771 (1976); P. Lazzeretti,
" R. Zanasi, J. Chem. Phys. 68, 832 (1978); P. 'A. Christiansen, E. A. McCullough, Jr., Chem.
Phys. Lett. 63, 570 (1979).
[4]1 T. Voegel, J. Hinze, F. Tobin, J. Chem. Phys. 70, 1107 (1979); M. A. Morrison, P.J. Hay, J. Chem.
Phys. 70, 4034 (1979); R. L. Martin, E. R. Davidson, D. F. Eggers, Jr., Chem. Phys. 38, 341 (1579).
[5] P. Swanstrom, W. P. Kraemer, 'G. H. F. Diercksen, Theor. Chim. Acta 44, 109 (1977); T. E.
Raidy, D. P. Santry, Chem. Phys. Lett. 53, 568 (1978).
[6] A. Dalgarno, Adv. Phys. 11, 281 (1962) and references therein.
[71 R. M. Stevens, R. M. Pitzer, W.-N. Lipscomb, J. Chem. Phys. 38, 550 (1963).
[81 R. McWeeny, Phys. Rev: 126, 1028 (1962).
[91 G. Diercksen, R. McWeeny, J. Chem. Phys. 44, 3554 (1966).
[10] R. Moccia, Theor. Chim. Acta 8, 8 (1967).
[11] D. W. Davies, The Theory of the Electric and Magnetic Propertzes of Molecules, J. Wiley, New York
1967.
[12] H.-I. Werner, W. Meyer, Mol. Phys. 31, 855 (1976).
[13] H.-J. Werner, W. Meyer, Phys. Rev. Ai3, 13 (1976).
[14] G. H. F. Diercksen, B. O. Roos, A. J. Sadlej, J. Chem. Phys., to be published.
[15] J. S. Sims, J. R. Rumble, Jr., Phys. Rev. A8, 2231 (1973).
[16] W. Meyer, in Modern Theoretical Chemistry, vol. 3, Methods of Electronic Structure Theory, Ed.
H. F. Schaefer III, Plenum Press, New York 1977, p. 413 and references therein.
[17] R. M. Glover, F. Weinhold, J. Chem. Phys. 65, 4913 (1976).
[18] W. Kolos, L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967).



891

[i9] H. J. Kolker, H. H. Michels, J. Chem. Phys. 43, 1027 (1965).

[20] F. P. Billingsley II, M. Krauss, Phys. Rev. A6, 855 (1972).

[21] M. Jaszunski, A. J. Sadlej, Theor. Chim. Acta 40, 157 (1975); M. Jaszunski, A. J. Sadlej, Inz.
J. Quantum Chem. 11, 233 (1977).

[22] K. Szalewicz, L. Adamowwz A, J. SadleJ, Chem. Phys. Lett. 61, 548 (1979).

[23] J. I. Musher, J. Chem. Phys. 46, 369 (1967).

[24] H. P. Kelly, Adv. Chem. Phys. 14, 129 (1969).

[251 L. Adamowicz, A. J. Sadlej, Chem. Phys. Lett. 53, 377 (1978).

[26] T. Itagaki, A. Saika, Chem. Phys. Lett. 52, 530 (1977).

[271 A. J. Sadléj, J. Chem. Phys., submitted for publication.

[281 A. J. Sadlej, J. Phys. Chem. 83, 1653 (1979). i

[29] J. Killingbeck, Rep. Prog. Phys. 48, 963 (1977).

[30] R. McWeeny, B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic Press, New
York 1969.

[31] D. F.-T. Tuan, S. T. Epstein, J. O. Hirschfelder, J. Chem. Phys. 44, 431 (1966).

[32] H. D. Cohen, C. C. J. Roothaan, J. Chem. Phys. 43, S34 (1965).

[33] S. T. Epstein, in Perturbation Theory and Its Applications in Quantum Mechanics, Ed. C. H. Wilcox,
J. Wiley, New York 1966, p. 49.

[34] K. A. Brueckner, The Many-Body Problem, J. Wiley, New York 1959,

[351 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

[36] D. J. Thouless, The Quantum Mechanics of Many-Body Systems, Academic Press, New York 1961.

[37] N. H. March, W. H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics,
Cambridge University Press, Cambridge 1967.

[38] A. 1. Sadlej, School on Computational Methods in Quantum Chemistry, Jablonna n/Warsaw, May
1975, Lecture Notes.

[39] T. C. Caves, M. Karplus, J. Chem. Phys. 50, 3649 (1969).

[40] T. Itagaki, -A. Saika, J. Chem. Phys. 76, 2378 (1979).

[41] J. A. Pople, J. W. Mclver, N. S. Ostlund, J. Chem. Phys. 48, 2960 (1968).

[42] J. E. Gready, G. B. Bacskay, N. S. Hush, Chem. Phys. 23, 9 (1977).

[43]1 J. M. Schulman, D. M. Kaufman, J. Chem. Phys. 53, 477 (1970).

[44] J. M. Schulman, D. M. Kaufman, J. Chem. Phys. 57, 2328 (1972).

[45] U. Kaldor, Phys. Rev. A7, 427 (1973).

[46] U. Kaldor, J. Chem. Phys. 62, 4634 (1975).

[471 A. J. Sadlej, Mol. Phys. 26, 1445 (1973).

[48] K. McDowell. J. Chem. Phys. 68, 4151 (1978); K. McDowell, J. Chem. Phys. 69, 5050. (1978).

[49] R. J. Bartlett, D. M. Silver, J. Chem. Phys. 62, 3258 (1975).

[501 S. Wilson, D. M. Silver, J. Chem. Phys. 66, 5400 (1977).

[51] D. M. Silver, S. Wilson, R. J. Bartlett, Phys. Rev. A16, 477 (1977).

[52] S. Wilson, D. M. Silver, Mol. Phys. 36, 1539 (1978); R. J. Bartlett, G. D. Purvis, Int. J. Quantum
Chem. 14, 561 (1978).

[53] V. P. Gutscliick, V. McKoy. J. Chem. Phys. 58, 2397 (1973).

[54] W. Meyer, Chem. Phys. 17, 27 (1976).

[551 A. J. Sadlej, Chem. Phys. Lett. 47, 50 (1977).

[56] A. J. Sadlej, Acta Phys. Pol. A53, 297 (1978).

[57] S. T. Epstein, A. J. Sadlej, Int. J. Quantum Chem: 15, 147 (1979).

[58] 1. L. Dodds, R. McWeeny, A. J. Sadlej, Mol. Phys. 34, 1779 (1977).

[591 A. I. Sadlej, Theor. Chim. Acta 47, 205 (1978).

[601 A. J. Sadlej, Mol. Phys. 34, 731 (1977).

[61] A. J. Sadlej, Mol. Phys. 36, 1701 (1978).

[62] 1. Hubad, P. Cérsky, Topics in Current Chem. 75, 97 (1978).

[631 F. B. van Duijneveldt, IBM J. Res. RJ (1971) 943.



892

[64] E. Clementi, IBM J. Res.. Dev., Suppl. 9, 2 (1965).

[65] P. Malinowski, M. Polasik, K. Jankowski, J. Phys. B 12, 2965 (1979).

[66] E. Eggarter, T. P. Eggarter, J. Phys. B 11, 1157 (1978), '

[67] S. Huzinaga, D. McWilliams, B. Domsky, J. Chem. Phys. 54, 2283 (1971).

[68] K. Jankowski, P. Malinowski, Phys. Rev. A21, 45 (1980).

[69]1 K. Fankowski, P. Malinowski, Chem. Phys. Lett. 54, 68 (1978).

[70] E. BEggarter, T. P. Eggarter, J. Phys. B 11, 2069 (1978). °

[711 F. W. Byron, C. J. Joachain, Phys. Rev. 146, 1 (1966); F. W. Byron, C. J. Joachain, Phys. Rev.
157, 1, 7 (1967).

{72] T. M. Miller, B. Bederson, Adv. Atom. Mol. Phys. 13, 1 (1978).

[73]1 R. R. Teachout, R. T. Pack, Atomic Data 3, 195 (1971).

[741 E. R. Cohen, B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973). .

[75] P. J. Fortune, P. R. Certain, J. Chem. Phys. 61, 2620 (1974).

[76] A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).

[77] A. T. Amos, R. J. Crispin, in Theoretical Chemistry. Advances and Perspectives, Eds. H. Eyring,
D. Henderson, Academic Press, New York 1976, vol. 2, p. 1.

[78] M. Jaszunski, B. O. Roos, Chem. Phys. Lett. 67, 189 (1979).

[79] M. Jaszunski, A. J. Sadlej, to be published. '

-



