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MAGNON ENERGY IN THE FERROMAGNETIC
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Using the method of effective Hamiltonian and the Coherent Potential Approximation
the expression for the magnon energy is derived for the case of the pseudobinary alloys
with the SRO. The numerical calculations are made for Pto,75(Cri—xMny)o.2s alloys.

1. Introduction

In the last few years the problem of magnon energy in the ferromagnetic alloys was
investigated intensively. For the long wavelength the magnon energy E, is given by formula
E, = Dg?, where D is the spin wave stiffness constant and q is the wave vector of magnon.

In this paper we would like to present the new method of calculation of the magnon
energy in the pseudobinary ferromagnetic alloys. Recently Morkowski and Jezierski [1]
used this method for Ni and Fe based alloys. In this paper we formulate the outline of
the method and present the numerical calculations for Pty 75(Cr; - Mn,), o5 alloys.

2. Effective magnon Hamiltonian and equations for coherent potentials

We consider a pseudobinary ferromagnetic alloys AI_CB;(I_x)ch where ¢ is the
concentration of impurities B and ¥, and x is the concentration of one of them. In our
case the concentration of Y is c¢x. The magnetic properties of pseudobinary alloy we shall
describe in the term of one band model of ferromagnetism. The system of itinerant electrons
may be determined by the Hamiltonian ‘

+
H =Y g a,+ Y tljal—:'aja'l' > Inym,_, @
lo ll;jeo'. I
J

where ¢, I; and t,; denote the atomic pdtential, Coulomb integral and hopping integral,
respectively. Those threc parameters take the different values depending on whether sites
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I and j are occupied by atoms A, B or Y. The operators #y,, a; are the occupation numbers
and the creation operator for electron in the Wannier states at the lattice site R, with spin
o, tespectively. Then we take

__jtif I and j are the nearest neighbours 5
710 otherwise. @)
Using the Coherent Potential Approximation we define the coherent Hamiltonian
H, = ;8(w)af;aza+ ;' hogaz,+ Y. I(@)nn_, 3
] g jo 2

1#j
in which e(w) and I(w) are the coherent potentials. Hamiltonian # we can rewrite as
K= KotV @

where V = # —#, is the perturbation term.
We assume that the ground state |¢po> of #, is ferromagnetic and we define, as in
paper [1], the magnon creation operator for the effective medium

By = zk: bk+q,k(w)alj+q,+ak,—s )

where the value of by, () is determined from the equation of motion in the Random
Phase Approximation (RPA)

[‘%c’ ﬂ;]RPA = Eqﬁ;’ = (6)
hence ‘ ‘
@ <nk,—> - <,'Ef,‘1'+> i D
N sk+q——ek+l(a))m—Eq’
k
b+ g1(0) = do( )[4, (), )
/ Q@) = s g— e+ [(@m—E, ©
‘ dy(w) = {; [Quo(@)] (K= > =M g+ M} 12, (10)

here m = n_—ny and n, = N-1Y ny,.
k

Then we introduce the effective magnon Hamiltonian # ¢ constructed by ,8; oper-
ators

K =Y, AW, 45 0By Ba (11)
where b
A(q, 4'; ©) = <ol [Bp [, By 1] 100> (12)
After some manipulations we get
A, 4’5 0) = Egbyg+ N Y ™ @O {[g;—e(@)] fog + 1= (@)Ihge},  (13)

q“aqq’
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here
Jar = Zk: {bk+q,k(w)b;f+ 040 (Mt g7, > =My g, 4 )

e bk+q+q',k+q’(w)b;{:+q+q’,k+q(w) Kng+ g <nk+q+q', + >)}: (13a)

heg = zk{bmq,k(w)b;fw’,k(a’)n— _bk+q,k(@)b;§+q,k+q—q’(a})n+} {<me—>

— (Mior g4 0}~ NI(@)]*dy(0)d2(o). (13b)

The perturbation term ¥ determines the scattering of magnons on the local fluctua-
tions of the atomic and Coulomb potentials, therefore we calculate the magnon energy
for small wave vector. The magnons of large wave vectors are highly damped by the scatter-
ing on local fluctuations. For the small ¢ vectors expressions (13a-b) assume the form

Jow = Fl4—19) ¢, (14)

heo =Bq-q'+Cq - ¢, (1%)
where
F=2p,/4, A=ILwym, C=Fn,,

0y = BmN)™* ; Ve (<= > — e D),

By = (6mN)™* ; VZeu((ne- )+ ). (16)

The equations for the coherent potentials e(w) and I(w) we find using the Green function
method. The magnon Green function Gyq(w) satisfies the following equation

Gup(w) = 20aq + 24 ; Ay G (), {an

here )
gq = (w_Eq)_l’ (18)
A = A(q, k; 0)—E 6. 19

Equation (17) can be written in the term of magnon 7-matrix

Gag(w) = gqéqq""quqq'gq" (20)

where T-matrix is given by
Ty = Aqq’+.; Age8iTrq- 1)
Taking the configurational average of Eq. (20) we get

<qu’(a))> = gqéqq'—l— gq<qu’>gq" (22)

In the CPA we put {T,y> = 0 and we get the conditions for the coherent potentials g(w)
and /(w). The magnon energy is determined by the pole of average Green function {Gyg(w)).
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In the Wannier representation equation (21) may be written as

T,; = A+ % A ZmnLujs (23
where

Ty = N Y, e 00T, 24

aq’
Ay =NTTY eI, (25)

aq’

gy = N7 Y, 7™ eg,, (26)

q

In order to solve equation (23) we assume the cluster model in which we consider the interac-
tion between central atom and its nearest neighbours. In the cluster model the T-matrix
elements have the form

T 1+t,(g0+Ry;
Ty = Tply = i ’Qﬁ : llg_lz]l_ ==, 1))
1—1;;t(80+Ry;81) (oRy + g1
where § and y denote the type of atom in [ or j site, and
I, = Tﬂoﬁ = tl1+g, 2/ T+ 80 Z' ATyl (28)
J*1 _ j#l
The summation includes only nearest neighbours.
}
vy = Ayl(1—(Augo+A1,81), "294)
R;; = Ap[ Ay (29¢)
g = 8u = N1 Z ((U—.Eq)_l, (29d)
q
g =gy = N1y et ® R (o—E)T (29¢)
qa

The configurational average of T-matrix elements we can calculate if we introduce c?

quantities as follows:

o = 1 if site l is occupied by f atom (30)
0 otherwise.
The using the definitions
(chely = Pog,tf(l—), 1+, €Y

here o is the SRO parameter, we can write

(Tyy = Y ATy, (32)
By
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and
(T = Tia+c[Top~Tos+x(Toy~ Top) . (33

From' conditions (32)-(33) we get the selfconsistent equations for coherent potentials
&(w) and Iw).

3. Numerical results for the pseudobinary ferromagnetic PtyCr,_ .Mn, systems

We tested our model for Pty ;5(Cr; - ,Mn,), ,5 system. To start with we present, in
a short form, the magnetic and structural properties of Pt,Cr, _ ,Mn, alloys for 0 <x< 1.
For all x the alloys crystallize in the CuzAu type structure. Pt-Cr systems have f.c.c. struc-
ture up to 60 at 7 Cr, but Pt-Mn alloys crystallize up to 40 at % Mn. The maximum of
magnetization is about 25 at ) Cr or Mn. First measurements for Pt-Cr system were
made by Kussmann et al. [2]. The neutron diffraction measurements (Pickart and Nathans
[3]) showed that Pt;Cr alloys are ferrimagnetics with two sublattices. The magnetic -prop-
erties of ordered and disordered Pt-Cr systems were investigated by Bessnus and Meyer
[4] and the dependence on the effects of the atomic environment was studied by Goto [5].

However, the atomic structure and ferromagnetic properties of PtMn alloys were
investigated by Sidorov and Dubinin [6]. Menzinger et al. [7] reported the local anti-
ferromagnetic ordering in ferromagnetic PtyMn alloys near the stoichiometric composi-
tion. The experimental investigations of Pt;Cr and Pt;Mn alloys indicate the existence
of the phase transition from the ferrimagnetic to ferromagnetic state.

Recently, Williams and Lewis [8] studied the magnetic properties of pseudobinary
PtsMn,Cr, _, systems, and they found the region of concentration x(0.2 < x<0.5)
in which the phase transition takes place. From the magnetization measurements Williams
and Lewis estimated the values of spin wave stiffness constant D for Pt,Cr,Mn, _ alloys.
The dependence of D vs x is very interesting, because for 0.1 < x < 0.9 the values of D
are almost constant and equal to + D for x = 0 or x = 1.

In this section we present the numerical calculations of the spin wave stiffness con-
stant for the Pty ;5(Cry_,Mn,)o. »5 system in which the short range order exists. Such
system is not quite equivalent to Pt;Cr,_,Mn, alloys but we think that the theoretical
results for Pty 75(Cry_,Mn,), ,5 System may be compared with experimental results for
Pt3Cr;_.Mn alloys. In the numerical calculations we consider the one band model of
ferromagnetism. The energy of electron ¢, was taken in the tight binding approximation
for the f.c.c. structure. We assume the bandwidth of alloy as for Pt [9]. The spin wave
stiffness constant we got from the solution of equations (32)-(33) for the following values
of parameters.

& = bmg =8¢, =0, u=1Iy,—I;, w= Iee—1Ip,.
The short range order parameter o we take as —%. The sums like N-! Y |Ve,|? and
X k
N-1)"V2g, were calculated by integration over + at the first Brillouin Zone for the f.c.c.
k

lattice [10]. For the simplification of the numerical calculations we take the Debye type
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of density of magnon states to calculate sums like equation

N~ Z k*e* R = — ——d fR) = 2 <@) ) (34)

dR> = R\ dR
k
where
A(R) = 3(sin x—x cos x)/x*, x = xpR (35)
and xp, is the Debye wave vector determined by the condition
4r 27)°
Ya=N (36)

where v is the volume of the sample and N is the number of electrons. The magnon Green
function g, was calculated using the lattice Green function [11].

For I, = 1.5¢V the dependence of D vs concentration x changes insignificantly for
different values of u and w (figure 1a and b). The completely different dependence of D

[¢]
Q
X
(]
1 -
0 05 1
X
Fig. 1. The dependence of the spin wave stiffness constant D vs concentration x for Pto,75(Cry - *Mny)o.z2s
alloy for different values of parameters: @ — % = —0.2, w=—02; b—u= —02, w=—10; ¢ —

‘=01 w=—-01;d—u=-01,w = 0.1

vs x we got for Iy, = 0.5 eV (figure 1¢ and d). The change of u and w gives different inclina-
tion of D(c). The values of Jp, were fitted so to have the subband with spin down com-
pletely filling. Our theoretical modelcorre sponds incompletely to the physical situation
in Pt;Cr,_,Mn, alloys. In the theoretical consideration we assumed that the system has
the short range order and we took the cluster consisting of Z+41 atom (Z is a number
of nearest neighbours). The theoretical results may be compared with experimental
data only in the ferromagnetic region. For Ip = 1.5V the theoretical results D vs x
have similar dependence as experimental data [8].



4. Conclusions

The problem of magnon energy in the pseudobinary Pt,Cr,_ Mn, systems is very
mteresting but it is complicated. In this paper we used the simple theoretical model and
;;alculated the- average exchange contribution to the stiffness constant. The previous
papers (Edwards and Fung [12], Morkowski and Jezierski [1]) showed the role of magnon
scattering contribution to the stiffness constant. For Pt-Mn-Cr systems the magnon scat-
tering contribution may be significant. The present calculations give the first information
about dependence D vs concentration in pseudobinary Pto,75(Cry - xMn,)e 25 system
with the short range order. )

[ am grateful to Dr D. E. G. Williams from Loughborough University of Technol-
ogy for an inspiring discussion on the subject of the paper.
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