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We considered the dynamics of a thin ferromagnetic film near the point ¢ of the phase
transition from the state of homogeneous magnetization in the plane of the film to the state
of inhomogeneous magnetization, i.e., to the domain structure. The easy magnetization axis
of a ferromagnet is perpendicular to the film. In the calculations the Landau-Lifshitz

- motion equations with a damping term of the Gilbert type were used. The demagnetization
energy of a thin film was taken into consideration. The motion equations were solved simulta-
neously with Maxwell equations in a magnetostatic approximation. The solutions for the
motion equations satisfy the boundary conditions laid on the magnetization vector and
potential of a magnetic field on the surface of a thin film. In the first approximation, with

L
respect to the small parameters, ° and Tc , the critical value /. having an intensity

(4
of an external magnetic field was obtained. The dispersion relation for spin waves in a state
of homogeneous magnetization also was obtained. The description of the dynamics of
a phase transition allowed us to consider relaxation processes below and above the phase
transition point. The analytical expressions for the values which characterise the phase
transition process and the values which characterise an appearing domain structure for
h < he are’ given,

1. Introduction

In a thin ferromagnetic film the phase transition from the homogeneous to the inhomog-
eneous magnetization state occurs for both fixed values of the external magnetic field
and thickness L of the film. The x, y dimensions of the thin film are much larger than
its thickness and they can be treated as infinite. The easy magnetization axis is perpendic-
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ular to the surfaces z = 4L of the film. The magnetization of the film is homogeneous
for L > L, when H® > HJ(L). In this case the field H® and the magnetization vector point
in the y direction. ‘

Let us assume that at 7 = O the field H® is varied from H® > HS(L) to H® < HS(L)
in a stepwise fashion and that condition |H°®—H|/H; < 1 is fulfilled.

The relaxation of the magnetization can be represented as.a superposition of two
processes: the relaXatlon of the magnetization vector magnitude, M H %), and the mhomog-
eneous- relaxation of the magnetization vector orientation. The first process takes place
rapidly for temperatures much lower than the Curie temperature. The relaxation time
depends slightly.on'the magnitude of H°— H, and the magnetization ‘magnitude is varied
only slightly. We shall now consider the inhomogeneous relaxation process of the magneti-
zation vector orientation. '

If the layer is much thicker than L, it is_possible to use the expansion method with
respect to the small parameter L./L. We will show that solutions describing the surface
modes can be omitted only in the first approximation with respect to L./L. In addition,
the universal boundary conditions can bé obtained for solutions describing the volume
mode unimodal approximation.

. 2. Equations of motion. Boundary conditions ..

We may use the pher_iOmenoldgical theory because the eher_acteristic frequencies
‘.:'and dimensions do not rule out this treatment [1]. The relaxation is described by the
ILandau-Lifshitz equation

>

oM Y e . W
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.where the energy W(M) of the system is a functlonal of M (r t) We shall study the simplest
model for which [1]

c e L U S e
W= f {_(VM)Z, A ﬁMg_% H“‘M—HeM}dV, @

fwhere H ™is the demagnetlzatlon field, C — 1sotroplc exchange constant and f — uniaxial
anisotropy constant (ﬁ < 47). The equation of motion (1) should be solved simultane-
ously with Maxwell’s equations, which have the following form in quasistatic approxima-
tion: _
H™+H® = H = —V¢, 4ndivM—A4¢ = 0. 3)
The" corresponding boundary conditions should be added.

" The system of Egs (1), (3) has the following form for small deviations 5M from
'homogeneous magnetization along the y axis ‘

iQm,+(Cq? —f+h)m, +ikp =0, _(h+Cq2)mx—i‘sz'+ ikp = 0,

dnixm,+4dnikm,+q*p = 0, (4)
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A o, Hy ... &M
where 2 = ——  h=——~ m=——; ¢=
&M, My .. M, M,

z, and ¢ in the following manher

. The values m,; m,, ¢ depend on x,

ml(x,z t) = m,(:c, k, oy exp {l(cot+zcx+kz)} I = x,
9% 2, 1) = gk, k, ©) exp {i(wi+xx+kz)), O ®)

and ¢*> = x?+k>. From the solubility condition of system (4) one can obtain f
(100 = q~>{4npr? — g(Cq® + h— B+4m) (Ca*+ ). e (6

Equation (6) has three 'rbots"viith"féspect to k2 or six roofs with respect to k to fixed values
Of KZ and (iQ)2: kl’ k2 = —kl’ k3, k4 = _k35 ks, ké = _ks.
Let us write m, in the following manner

= i a; exp (ik;z). )

The values m, and ¢ can be represented in a similar way. The coefficients with exp (ik; z)
can be computed using the set 6f Eqs (4). These coefficients depend linearly on coefficients
a; in (7). The solutions of Egs (1), (3) would satisfy the respective boundary conditions
on the surfaces z = +4 L where both the potential ¢ and the normal component of the
magnetic induction vector are continuous. Outside the film the magnelization is equal
to zero and the potential ¢ satisfies Laplace’s equation. Its solutions are equal to zero
at infinity and have the following form in the (x, z, ) representation

= gt 6))

Using (8), the continuity condition for the normal component of the magnetic induction
vector B, = H,+4nM, can be presented in the following way

‘ O L
Cdmmy— —— kil =0; z=+—. ®
-0z 2
The boundary conditions for m have the form [1, 3]
om, L om, L
— ddm,=0; z=+—, Z4dm, =0; z=+4-, (10)
0z 2 0z 2

where d is the surface anisotropy constant. After substituting m,, m,, ¢ expressed in the
form (7) into (9), (10) we find the equations describing a; to be

: |
PR an

The condition Det |4] = 0 gives us the connection between ki, ks, ks, x and Q. Each of
the roots of the dispersion equation (6) is a function of x and Q. Conditions (11) and (6)
define the dependence Q = Q(x). The magnltude of ¥ = (iQ)? is less than zero for /& > A,

and has a maximum at the point k% = x2 for an arbitrary 4.
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Near the maximum the value Y can be presented in the following form
(%) = Yo(d)—p(x* —xg)". (12)

The solutions of Eqs (4) increasing as exp (\/ Yot) exist for Y, > 0. The fastest growth
appears for the harmonics where ¥ = +x,. The value 4, is defined by condition

Y,=0 for h=nh, (13)

We can obtain the solutions of Eqs (4) with Yy = 0,2 = A, k* = Ke if we take into account
the symmetry of this static solution with regard to the substitution z — —z(k; > —k).
In this case, in place of (11) we shall obtain three equations with three unknown quantities.

3. The solution of the motion equations near the phase tramsition point

The computations for A ~ h(L) are much simpler if L > L, (h(L) = 0). In this case
for k2 — k2 one of the roots k3, k%, k2 is small and the ratio k,/k; tends to zero if & — A,
and L — oo. The coefficients with exp (ik;z) in (7) are as small as k,/k; for i =3,4,5,6.
In the domain of the values «, 4, L the relation k? < x? holds for small k,. By omitting
the small components in (4) one can obtain

i‘me+(C1c2—/3+h)mz+iktp =0, hm,—iQm,+ikp =0,

Amixm,+4nikm,+1x>p = 0. (14)
Hence, !
2 .
K = X (LY (dn+h) (CK - B+h)}, (15)
4rh
and
iQi® —4nxk —A4ri(hk +ixQ)
My = — m,, Q= ——5 — m,. (16)
P(dn+h) (4t h)

The solutions of (14) should satisfy the boundary conditions (9) (10). In the full solutions
for m,, m,, ¢ we should take into account terms such as kjexp (ik;z) and j = 3, 4, 5, 6
because the roots k; are not small quantities. However, the derivatives with respect to z
of the small terms are, in general, of the same order of magnitude as the derivative of the
main part. After taking into account that k; >« ~ \/ k, one can obtain the connection
between the respective parts of the solution when the roots are large. From Eq. (4) one
can obtain '

iQm,+Ck*m,+ikp = 0, (Ck>+h)m,—iQm, =0,
drikm,+k*p = 0. 17
The solubility condition for the set of Egs (17) is as follows
(iQ)?* = —(Ck*+h) (CK* +4m). (18)
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We obtain the following results for |i] < 1 with an accuracy of the order of terms small
in comparison with Q

h 4n
Ki=——, ki=——. 19
AL (© c (19
It follows from (17) that
iQ 4ri
- - - m. 20
M= e g ? PRl (20)

The order of magnitude of the coefficients with exp (ik;z), j = 1, 2 can be estimated by
utilizing boundary conditions (9), (10). Let us present m, in the following form

m, = mP+m®P, m® = acoskyz+bsink,z,
m® — z 0, - e

and similarly for m, and ¢. The precise relations between m,, ¢ and m, are defined by
formulas (16) and (20)

e D . & (o)
m® = - —lQK m® 4 -——*—4m >
¥ KX (4n+h) k(dn+h) 0z
iQ 4zh  om®
¢ = m®— — , (22)
k(4w +h) k“(4n+h) Oz
and :
6 6
W _ o Cj k2 ORI Ci kg 23
my’ =i me , @) = —4ri s (23)
= =

Let us assume that the contribution of m{", m{", ¢ is sufficiently smali not only in
comparison with m,_, m,, @ but also in comparison with their derivatives with respect to z.
This means that m{?, m{*’ and ¢® should satisfy the boundary conditions (9), (10) which
have the following form after taking into account formula (22)

om® ‘ L
m + 4, =0 =%, (24)

where the 4;(j = 1, 2, ..., 6) have different values for different conditions (9), (10). How-
ever, in general, Eqgs. (24) are consistent only if first order terms in k; are neglected. Their
non-consistency when first order terms in k,; are included means that it is necessary to
take into account the terms which arise from m{", m{}, ¢*). Hence, we find that in the
zero approximation the condition m(®> = 0 should be fulfilled for z = + 1L which leads
to

kiw=mnz/L, n=12,... (25)
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The L=2 order -corrections in the expression defining &, can be obtained only after taking
into consideration the remaining roots k5 and k3.
Using (25) we can obtain the following form of formula (15)

.2 B
Y = (iQ)? = — 4”—5%1 —(n+h) (Ci* — B+ ). (26)

No assumptions about the magnitude of @ and k,, were made in the derivation of (26).
The magnitude of Y is limited by the possibility of the appearance of an additional small
root in (18), which occurs when Y = 4rh. From (26), near the maximum of ¥ one can
obtain

Y = Yy—y(?—K2)?, Yy = —(4n-+h) (h—B)—4ky, N ThC(@dn+h),

1 [@r+hPC?
Y=o l——— (27
2k1n : TCh
' 12 '
Ko = ky kil : (28)
"7 | Cdn+h)

The phase transition defined by the condition Y, = O appears for the critical field /.
which is defined as follows

; _ ey PP
he = B— — ﬁ[ﬂﬁC(4n+ﬁ)] . (29)

Formulas (28), (29) were given in [2]. In that paper the calculations were done in the
approximation (14) without a detailed analysis of accuracy, i.c., without taking into con-
sideration solutions which are connected with the remaining four roots of relation (6).
According to (27) the domain of the increasing excitations appears for & < h,. The charac-
ter of nonstability of the homogeneous magnetization is similar to the situation that
occurs in spinoidal decay [4, 5].

4. The relaxation of a system to the equilibrium state

In the process of the magnetization relaxation near 4 = h, the damping processes
play an essential part. An additional term has to be introduced into the Landau-Lifshitz
equation (1) in order to account for the damping of the spin waves. The analysis of the
approximations carried out above is not altered when damping is taken into account.
The Gilbert equation of motion with the damping term has the following form [1]

—

oM . « [. oM
= g[MxH|— — | Mx —|. 30
ot g[M x Hy MO[ % at:I (30)

We are also going to take into consideration the nonlinear terms which limit the increase
of the magnetization amplitudes. Near 4 = A, the value of m, is small (of the order of
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(h,—h)/h,) and hence we take into consideration only the first nonlinear term as in the
static case [2]. With the above assumptions only the form of the first equation of set (14)
is changed

iQm.+ | ~C— —B+h+iaQ | m,+ 2 4 L m: = 0. (31
0x 0z 2

In the same approximation with respect to L/L, and (h,— h)/h, we obtain the following
equation for m,

L # anepy 215
eM, 22 " TP | axz

2 2
= (4n+p) a_a); [c aa;;z +(B—h)ym,— g mi] —47p aa:Zz . (32)
We are looking for solution; of Eq. (32) having the form
m, = iil Ax, 1) cos ky,z,  ky, = nk,, = nn/L. (33)
From (32) the following set of equations results for A (x, 1)
G, (x, 04, = % (4n+p) g Z A Ay Angs (349

ni+ny+n3=n
where G, is a linear operator. It is significant that the solutions of the linearized equations
G i(x, D4, = 0 (35)

are increasing functions for n = 1 only (with 4 — h.). This means that the ratio AnfAy
~ (he—h)/h, for m # +1, and the solution of Eq. (34) may be found using the successive
approximation method. In the first approximation we obtain the equation for 4,

1 @  375%4
[gv ﬁ +0C(47f+ﬂ) a—t:l W; = 4ﬂﬁk%1A1
0

+(4n+ﬁ)§_;{cga=):_2 +(ﬁ—h)—%,3Ai] A;. (36)

Let us consider the solution of Eq. (36) in the following form
A, = _}o Aq(k, t) cos xxdx. 37
From considerations similar to those ébove we conclude that it is possible to retain in Eq.

(37) only the terms arising from the domain of x, for which the magnetization is unstable
when (4, —#h)/h, — 0. This domain is reduced to the point x, which is described by (28),
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that is

, A [ 4mB g 2_7:_[4C(4n+h) 2
K°_[C(4n+ﬁ)] S ] VL =

where D is the period of the appearing domain structure. This is the reason that the value
m, may be described by

my(x, z, t) = A(t) cos KoX €Os kq4Z. 39
where A(7) fulfills the following equation

d?A N d4_ dU(4) "
iz VT T Tda (40)

The values U(4) and y are defined in the following manner
U4) = —% gMoYod® + 135 eMo(dn+B)BA", Y
y = a(dn+BgMo. (42)

The coefficient appearing with 42 in expression (41), proportional to Y, changes the sign
for h = hy (Yo(h > he) < 0; Yolh = hy) = 0; Yo(h < h) < 0). The dependence U = U(4)
is illustrated by Fig. 1.

» UlAIA

Fig. 1

Eq: (40) is the equation of motion of a nonlinear damped oscillator. The magnitude
of A(0) is defined for ¢ = 0 by the thermodynamic fluctuations in the initial stable state.
Near the phase transition point the frequency of the eigen vibrations of the oscillator is
small for & < h, and the relaxation is described by the monotonic function

A7X(1) = A5 +(A72(0)— A5 %) exp (—t/to); 43)
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where the magnitude 4, of the amplitude of the equilibrium state is given by

, 32y,

° T 9pdn+p)’ )

and the relaxation time is given by
to = &2 ary(h,—h). ‘ (45)

The vibrations of the system are damped for % > £, under the condition (h—~h)/h, < 1.
The friction should be small (¢* < 1) in order to realize this case. The limiting magnitude
of the magnetic field %, is as follows

hy = ho+1 dP(4n+p). (46)

In this case the frequency of the damped vibrations and the relaxation time ¢, are given
by
Wy = gMo|Yol, o =2y " 47)

For the value of the intensity of an external magnetic field in a range &, > & > h, the
dependence A(7) is described by functions exponentially diminishing in time. The soft
mode of the spin waves shows decreasing values of & > h,. When (h—5.)/h, < 1 the mode
with k¥ = Kk, has the smallest frequency. The frequency of these spin waves in the homo-
geneous phase decreases near the phase transition point. In the domain |h—h,| ~ b, —h,|
strong damping appears. For 4 > k. the lowest value in the frequency spectrum of spin
‘waves is given by formula (47).

5. Concluding remarks

In a thin ferromagnetic film whose thickness L > L (0) with one axis of anisotropy
described by a constant f < 4n the domain structure appears. The case in which a thin
film is in an external magnetic field lying in the plane of the film and perpendicular to the
easy magnetization axis has been considered. For the values of an external magnetic field
h > h,, the thin film is homogeneously magnetized in the direction of external magnetic
field action. When % < A, in the thin film, the domain structure appears. At the point
h = h, there is a continuous phase transition from the state of homogeneous magnetiza-
tion to the domain structure. The value of the critical field %, is a function of the thickness
L of the film. :

In this paper the scheme which describes the phenomenous occurring in the phase
transition region in support of Landau-Lifshitz formalism has been given. In the range
of external magnetic field values 4 < 4,, the dispersion relation (6) was obtained for the
spin waves. The scheme for the solution of the motion equations (1) and Maxwell equations
(3) in a magnetostatic approximation with respect to boundary conditions (9), (10) for
arbitrary values of an external magnetic field 4 > 4, and the thicknesses of a film L > L (0)
was given. The detailed analysis of the solutions of the set of equations (1), (3) for
(h—h)/h, <1 and L(0)/L <1 with an estimation of the accomplished approximation
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has been carried out. This has allowed the determination of the critical value 4. given
by formula (29). We considered the relaxation process of a system to the equilibrium state,
which is, in dependence on the values 4, the state of homogeneous magnetization, or the
domain structure. The relaxation process is described by equation (32) in which the damp-
ing term and nonlinear term have been considered. The scheme for the application of the
perturbation calculations with respect to the small parameters |z — A.|/A,, L /L for the solu-
tion of equation (32) has been given. In the first approximation of the perturbation calcula-
tions the relaxation process of the system is described by equation (40) which is analogous
to the equation describing the motion of the nonlinear oscillator with damping. The anal-
ysis of coefficients appearing in equation (40), being functions of 4 and the damping
parameter «, shows the existence of different types of relaxation processes. The calcula-
tions carried out allow for the determination of period D of the domain structure (38)
and magnetization in domains defined by equilibrium amplitude A4, glven by (44) The
model presented is a selfconsistent description of the domain structure’in a thin film near
the phase transition point.
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