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AB INITIO SIMPLIFIED CALCULATION
OF THE INTERMOLECULAR INTERACTION ENERGY*

By K. PecuL aND A. LE§
Quantum Chemisiry Laboratory, University of Warsaw**
( Received May 11, 1979)

The SCF interaction energy between two molecules is approximated by a combination
of the first-order perturbation interaction energies between deformed and undeformed
interacting molecules. The molecular orbitals used in the undeformed molecules and in the
deformation potentials are obtained by the least-square fit approximation to the primary
molecular orbitals. Numerical results for the linear configuration of the hydrogen molecule
dimer are in a fair agreement with the SCF interaction energies.

1. Introduction and method

It is well known that the Self Consistent Field (SCF) interaction energy between two
closed-shell molecules, evaluated as the difference of the respective total energies calculated
by the SCF method, can be approximated by the sum of the electrostatic, valence-repulsion
and induction interaction energies. The accuracy of such an approximation is greater
when the molecules are charged or their permanent dipole or quadrupole moments are not
very small and when the intermolecular distance is large. The electrostatic and valence-
-repulsion energies belong to the first-order perturbation energy and can be evaluated by
several methods (see e.g. [1-8]). The induction energy can be calculated as the sum of
some terms obtained from the variation-perturbation procedure [5], but, as mentioned
above, can be in some cases assumed as the difference of the SCF and first-order interaction
energies. All the calculations quoted above need the complete number of the molecular
integrals used in the SCF dimer calculations. This is probably the reason why the SCF
interaction energy calculations rather than the perturbation ones are practised by most
of the investigators.

Some simplifications in the calculation of the molecular orbitals used in order to calcu-
late the induction energy were introduced by Piela and Andzelm [6, 9]. They took as these
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orbitals the molecular orbitals (MOs), deformed by the field of other molecules represented
by either the exact molecular density calculated with some basis set or the point charges
(exact charges in the case of the atomic ions and the Mulliken chargés in the case of the
water molecule). They calculated the induction energy as the difference of the mean values
of the hamiltonian with the wavefunction built of the deformed and undeformed MOs,
respectively.

The purpose of the present contribution is to calculate the sum of the first- and sec-
ond-order interaction energies in a simplified way, using a considerably reduced number
of integrals in comparison with the SCF dimer calculations. Our method can be illustrated
by some formulas for the interaction energy in the polarization approximation.

Let F,(1,...,n,) and Fp(ny+1,...,n,-+ng) be the normalized unperturbed wave
functions of the molecule 4 with n, electrons and of the molecule B with ny electrons,
respectively. Let the normalized wave function of the molecule 4 deformed by the electro-
static molecular potential of the molecule B be (F,+f,) and the respective wave function
of the molecule B be (Fz+f3). In order to simplify our formulas, let us assume that F,,
Fg, f, and f3 are real. Itis well known that (E) + E®), i.e. the sum of the first- and second-
-order corrections to the energy, is given by

ED+E® = (FOW|FO+FDy, (1a)

where V is the hermitian perturbation operator and F®, F) is the unperturbed wave
function and its first-order correction, respectively. Let us assume that ¥ is the intermolec-
ular interaction potential for the 4B system and that for this system F® = F, F,. If the
charge transfer and intermolecular overlap effects are small, the perturbed wave function,
Frt = FO L FM) can be replaced by (F +f)(Fp+fp) and the sum (EM+E®) can
be replaced in this case by

E™ = [ do((F g +f0) (1, oo ) X (Fy+f5) (gt 1, ooy ng+ng)x V
xF 1, ...,n)xFgng+1, ..., n,+ng), (1b)
or
E™ = [di(F (1, ..., n)x(Fa+f) A, .., n)xV
xFp(ng+1, ..., ng+ng) x(Fg+fp) (ny+1, ..., ny+ng)). (1cy

It can easily be proved that, when our assumptions hold, our approximate interaction
energy

E™ = Ja((F a1, .., n))° XV x((Fg+f5) (ng+1, ..., ng+ng))’?

+(Fg(ng+1, ..., n+np))* x Vx((Fy+f0) 4, ..., 1)) (2a)

differs only in third- and higher-order correction terms from E™ given by (lc) and that
the normalization terms are also third- and higher-order correction ones. We propose
to use Ei™ instead of E™,
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Up to now, we did not obtain any reduction in the number of the molecular integrals
in comparison with the SCF dimer calculations. Now, let us approximate F,, Fy and E;™
by Fy;, Fp; and E;“;, respectively, where

E:ln; = %.“ dr((F 4;(1, ..., n))xVx ((Fp+fp) (ns+1, ..., n4+ng)’
+(Fpi(ng+1, ...,nyg+np))* x V< ((Fu +f4) (.., m))?) (2b)

and f,;, f5; means that these deformation corrections are evaluated by using the molecular
potential calculated from Fp; and F,; wave functions, respectively.

We will discuss hereafter the interaction of the closed-shell molecules and limit our-
selves to the one-electron approximation i.e. use Slater determinants as F, and Fp wave
functions. The F,; and Fp; wave functions will be the Slater determinants built of the
MOs being the approximation to the primary MOs, obtained by the least-square fitting.
Since e.g. the MOs of F,; can contain very small number of primitive atomic orbitals
in comparison with the MOs of F,, the number of the molecular integrals used in the
calculation of the approximate interaction energy can be considerably reduced, in compa~
rison with the complete number of dimer integrals.

The evaluation of our Ea";t contains formally the calculation of two first-order electro-
static interaction energies, the first one between the molecules described by F, jand (Fp+/3;)
wave functions and the second one between the molecules described by Fj ;and (F+f4)
wave functions. In order to take into account the exchange effects in the interaction energy,
we calculated not only the electrostatic energies mentioned above, but the respective
first-order interaction energies with the appropriate antisymmetrization, as proposed
by Léwdin [3] and performed e.g. by Andzelm and Piela [6].

In order to test our approximations, we perform calculations of the interaction energy
between two hydrogen molecules in the linear dimer. The H, dimer has been studied by
many investigators (see e.g. [7, 8, 10] and references therein) and the results obtained so
far can be used for the comparison. In such a system the charge-transfer effect should be
very small. Since the molecular density used in the deformation potential can hardly be
replaced by the point charges, the use of the approximate orbitals seems to be useful.

Our primary basis set, used for the calculation of the primary MOs, is given in Table I.
It is composed of the simple spherical Gaussian Type Orbitals (GTOs). The symbols
in the first row of Table 1 denote the consecutive number of the GTO, its centre, its exponent
and its coefficient in the contract, respectively. All the values, including exponents, are
given in atomic units, the GTOs are normalized. The centre H1 denotes one hydrogen:
nucleus, the centre HCEN denotes the centre (midpoint) of the H, molecule. Only the
GTOs with the consecutive numbers 4-7 are contracted in one contract, others presented
in Table T are uncontracted. The 7 GTOs centered on other hydrogen nucleus, which can
be labelled H2, are not given in Table I, but they have the same exponents and coefficients
as in the respective GTOs labelled 1-7.

The primary basis set was constructed by one of us (A. L.) as an approximation of
the Kotos and Roothaan MO [11]. The description of the used method and the detailed
discussion of the basis set was given elsewhere [12, 13]. The energy of the ground state
of H, molecule obtained with this basis set is E(H,) = —1,133378458.
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TABLE 1
Primary basis set

No [ Centre Exponent Coefficient
1 H1 0.0948 1.0
2 H1 | 0.1988 1.0
3 Hi : 0.4252 1.0
4 H1 | 1.168 0.1044890
5 H1 3.676 0.0417543
6 i Hi 15.61 0.0102140
7 l H1 143.1 | 0.0010082
8 HCEN 0.04129 1.0
9 | HCEN | 0.4958 1.0

10 ] HCEN 1.895 1.0

The approximate MOs are given in Table I1. The meaning of the symbols is the same
as in Table I, except of the second index in the first column. In the MO cailed hereafter
F; nad being the linear combination of 3 GTOs, the second index in the first column
is equal to 3, in the respective Fy six-term MO it is equal to 6. Our MOs were obtained
by the least-square approximation (fit) of the primary MO. The method of the fitling was
the same as used by Reeves and Fletcher [14] and continued by other investigators [15-16],
but in our case all the integrals are calculated analytically.

TABLE 1II
Approximate molecular orbitals
No Centre I Exponent Coefficient
1, 3 Hi1 ‘ 0.98242381 0,28791462
2,3 H2 0.98242381 0.28791462
3,3 HCEN 0.17027561 0.61411106
1, 6 Hi 2.66603 | 0.09797368
2,6 H1 0.400428 0.29767592
3,06 H2 2.66603 0.09797368
4, 6 H2 0.400428 | 0.29767592
56 HCEN 0.909846 0.10652628
6, 6 HCEN 0.113396 0.32599211

The induction (or polarization) of one hydrogen molecule (A1) by the other (442)
is taken into account by calculating the deformation of M1 with the primary MO by the
field of the M2 molecule. The deformed primary MO is calculated as the SCF MO of the
M1 molecule with the additional electrostatic deformational molecular potential due to
the charge distribution in the M2 molecule. This charge distribution is calculated using
the approximate MO.
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In order to evaluate the approximate interaction energy, we calculate the first-order
interaction energy between the M1 molecule with the deformed primary MO and the M2
molecule with the approximate MO. In such an approximation the third- and higher-order
effects of intermolecular interaction are not taken into account properly, but, on the other
hand, the number of the molecular integrals used is considerably reduced in comparison
with the full SCF dimer calculations in the primary basis set.

Both the deformation and first-order interaction energy calculation are performed
using the programs written by Andzelm and applied previously in his investigation of the
LiF crystal [6, 17]. The SCF interaction energies with the primary basis set are also calcula-
ted for the sake of the comparison. In the SCF calculations we apply the counterpoise
method of correcting the superposition errors (basis set effect) [18, 8, 19]. In all our calcula-
tions the value of 1.4 a.u. for the internuclear distance is assumed for the isolated hydrogen
molecule.

2. Results and discussion

The values of the interaction energy, given in 10~# a.u., are presented in Table IIL
The symbol in the first column, d, denotes the distance between the centres (midpoints)
of the H, molecules in the linear dimer presented also in Fig. 1 of Ref. [8]. The symbols
¥ and V, denote the variational (SCF) interaction energies for the primary basis set, calcu-
Jated without and with the counterpoise correction, respectively. The counterpoise cor-

TABLE TI
Interaction energies in 10~* a.u.
- I B I -
d ! 1 V. | EFs EF% ' EF, EF} UHV UHIX
8.5 0.272 0.328 0.329 0.335 | 0.344 0.351 — -
7.5 0.663 0.802 0.781 0.754 0.711 0.729 0.62 0.88
7.0 1.241 1.429 1.420 1437 | 1.157 1.185 1.10 1.53
6.5 2.545 2,798 2.920 2.922 | 2.168 2202 | 218 2.94
5.5 12.553 | 13.071 | 15.686 | 15.172 | 11.625 | 11.339 | 10.85 13.16

rected SCF interaction energy for Basis V and the uncorrected (but practically equal to
the corrected one) for Basis IX of Urban and Hobza [7, 8] are denoted by UHV and
UHIX, respectively. Qur approximate interaction energies between deformed and unde-
formed molecules are denoted by EFg and EF,; for Fg and F; approximate MO, respec-
tively. The respective interaction energies between underformed molecules (first-order
interaction energies) are denoted by EF; and EF;.

The SCF interaction energies obtained for Basis IX of Urban and Hobza [7, 8],
practically equal to those of Jaszufiski et al. [10], are probably the most accurate among
all such results. Therefore, they are quoted in Table III. The counterpoise corrected re-
sults for Basis V are the best among all those corrected and uncorrected for small and
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intermediate basis sets of Urban and Hobza. The calculations for Basis V need, in our
opinion, at least 3 times more computation time than ours using the F, MO.

The Coulomb and exchange contributions to the approximate interaction energy
are presented in Table IV. The symbols CF,, CF:, CF;, CF: denote the Coulomb interaction
energies appropriate to the EFs, EFg, EF;, EF;, respectively. The EXFs and EXF, symbols
denote the exchange energies defined by EXF; = EF;—CF; where j = 6,3. The EF: and
EF; cnergies are defined by EF} = CF; +EXF . Where EX]”1 = EF; —CF} and j = 6,3.

TABLE 1V
Coulomb and exchange contributions in 104 a.u.
. = —7]— —_— — —_—
d CFs ’ CFs | CF, ‘ CF3 EXFs | EXF; } EF} EF}
8.5 0.301 l 0.307 | 0.333 0.340 | 0.028 0.011 ‘ 0.329 0.344
7.5 0.514 | 0.532 0.591 I 0.612 | 0.267 | 0.120 0.776 0.708
7.0 0.636 0.671 0.771 0.811 0.785 | 0.368 | 1.401 1.145
6.5 ‘ 0.682 | 0.760 0.936 1.021 2.238 | 1.232 2.844 2.117
5.5 —0.851 | —0.334 0.063 1 0.585 ‘ 16.537 11.562 14.655 10.817

As it can be proved from Table 111, our EF results are in a good agreement with the
counterpoise corrected SCF ones, for large intermolecular distances, where the exchange
and higher-order effects are small. The agreement for R = 5.5 a.u. is not so good, but
for such internuclear distances the relation EF; < EF¢ does not hold. This means that
for small R the MOs of the molecule A calculated by minimizing the energy of the mole-
cule 4 deformed by the electrostatic molecular potential of the molecule B are not close
to those MOs of the molecule 4 which minimize the first order interaction energy, including
exchange, between deformed molecule 4 and undeformed molecule B. The electron
density in the deformed molecule 4 is in such a case too much shifted towards the mole-
cule B. Therefore, the increment of the exchange or valence-repulsion interaction energy
is very great, for R = 5.5 a.u. even greater than the ‘““pure” induction energy i.e. the incre-
ment in the attractive Coulomb energy. On the other hand, it is evident that the induction
or deformation effects should reduce the total energy i.e. EF; should be lesser than EF;, !
where j labels the approximation used for MOs. Therefore, in order to improve our method
the exchange effects should be taken into account in the deformation calculation. If they
were, the increments of the exchange and attractive Coulomb interaction energies should
be reduced, in comparison with their present values, in such a way, that the total energy
should also be reduced. Therefore, if we denote such improved interaction energy by E,F s
we can write

EFi < EF; < EF}. &)

As it can be seen from Tables I1T and IV, the absolute values of the relative differences.
(EF3 — V) and (EF, — V,) do not exceed 17% for R = 5.5a.u. and 5 % for greater R.
This suggests that our method is useful also in the part of the region, where the exchange:



751

is important. The ¥, (SCF) interaction cnergics are better approximated by 6-term than
by 3-term results, (better agreement of some 3-term results for R = 5.5 a.u. is fortuitous)
as it should be. We find EF; > EF, and EFg > EF; for all R, except for R = 8.5 a.u.
Urban and Hobza [8] also find that their first order interaction energy (approximately
equal to our EF}) becomes less repulsive when going from a large basis set to a small
one, but they do not comment this effect. The comparison of the exchange energies pre-
sented in Table 1V suggests that it is due to the underestimation of the exchange interaction
energy in the calculations using small basis sets, in our case using the F; MOs. When the
exchange interaction energy is very small, in our calculations for R = 8.5 a.u., this effect
is invisible. It is interesting that the “pure” or “polarization” induction energies, CFs—CF2
and CF,—CF;, are almost equal. Therefore, the electrostatic molecular potential can be
well described by using the least-square fitted MOs, even for relatively short expansions.

The numerical results suggest that it would be possible to calculate the first-order
and induction interaction energy, between two closed-shell systems with not very small
permanent dipole or quadrupole moments, within an approximation such as ours, instead
of using the time-consuming SCF or perturbational methods of calculation.

We feel very indebted to Dr. Jan Andzelm for providing us with his programs.
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