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A detailed calculation with the Ashcroft pseudopotential applied in a consistent way
for the whole alkali metal group (except Cs), is worked out as a part of the unified study
of metals in a pseudopotential frame-work. To facilitate the calculation of elastic constants
and their pressure derivatives, a new homogeneous deformation theory has been developed
and discussed in some detail giving explicit final expressions. The single parameter of the
model potential is determined from the equilibrium condition. Most of the static properties
are found to be in fairly good agreement with experiment. In the pressure derivative of Cas,
however, the discrepancy is large and it is of the order of twenty per cent. But the major
failure of the model is revealed in the dispersion curves where the maximum disagreement
with experiment is as high as forty percent near the zone boundaries. The reason for this
failure is examined.

1. Introduction

The study of metals on the basis of the pseudopotential theory has made spectacular
progress during the last ten years. This theory is particularly important for those properties
of metals which depend on the existence of an effective potential energy which is a function
of the ionic co-ordinates and the mean atomic volume of the crystal. These properties
include both the dynamic and static properties. In recent years pure phenomenological
studies of earlier years have been more or less completely replaced by pseudopotential
theories. The success of these theories in specific problems has been so encouraging that
one feels that comprehensive unified studies of metals must now be very fruitful. Unfortuna-
tely such studies are very rare, even with a simple local pseudopotential model such as

that of Ashcroft (1966). There has been a large number of studies of the properties of -

alkali metals on the Ashcroft model but none of them aims at a unified study. Ashcroft
potential contains only one parameter, but Ashcroft (1967) himself and some other authors
(1970) used two different values for the same parameter in the first and the second order
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energy expressions respectively in their calculations. This makes the model inconsistent.
Dunn et al. (1974) used a consistent one parameter Ashcroft model, determined the value
of the parameter from the equilibrium condition and calculated a few of the static proper-
ties only. It is quite obvious that such studies do not bring out clearly the degree of reli-
ability and the inadequacy of a pseudopotential properly.

Brovman and Kagan (1974), to our knowledge, are the only authors who have attempt-
ed a unified study for some of the metals. They used a local form of the Heine-Abarenkov
potential with a tail end cut off so that altogether it has three parameters. Of the alkali
metals they studied only sodium. They have also discussed in detail some of the difficulties
of such a study. One of the main difficulties is the calculation of elastic constants. Earlier
Suzuki et al. (1968) and Wallace (1969) had developed methods of homogeneous deforma-
tion (h.d.) after Fuchs (1935) for calculating elastic constants. But their method of calculat-
ing first the Fuchs elastic constants and then converting them to Brugger elastic constants
is rather cumbrous. Instead we use a straightforward method of h.d. (1978), discussed
briefly in Section 2, which is much simpler than the previous h.d. methods or compared
to the tedious long wave method that has to include the third and fourth order terms
in the energy expression.

In Section 3, we undertake a unified study of the properties of four alkali metals Li,
Na, K and Rb, on the basis of one parameter Ashcroft pseudopotential. There parameter
is determined from the equilibrium condition. The results are discussed in Section 4.
Our conclusion is that Ashcroft model is unable to give good results for both the static
and dynamic properties simultaneously. The cause of this inadequacy has been discussed.

2. Homogeneous deformation theory for elastic constants

According to the second order pseudopotential theory, the energy/atom for a perfect
simple metallic lattice is given by (V' = Volume per ion),

where E; is a purely volume dependent energy and is given for monovalent metals by

5.7427  1.4766 e
wp’® being the non-Coulomb part of the first order pseudopotential energy.
The electrostatic energy E, of the positively charged ionic lattice immersed in a uniform

distribution of negative charge is, according to Fuchs (1935) (in a.u.)
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and ¢ is an arbitrary constant having the dimension of cm, G is any reciprocal lattice

vector.
The band structure energy E; may be written as (in a.u.),
"VG? 1—e(V, G)
E; = — |wg)? , 4
: E;mn'cl eV, G) @
G

where wg is the bare pseudopotential matrix element and &(¥V, G) is the Hartree diclectric
function.

Thus the total energy per unit cell has three different types of contribution, 1) purely
volume dependent, 2) two body central interaction in direct space and 3) volume dependent
two body central interaction in reciprocal lattice space. Since the expression for the total
energy is valid for any primitive lattice, one can differentiate it with respect to homogeneous
deformations and calculate the contribution to Brugger elastic constants from each term
in the following way.

A. Volume dependent energy

The uniform electron gas energy E; and the term involving n/c*V in E, depend only
on volume. By expanding this energy (E; —n/c*V) = &, in terms of the Lagrangian strain
tensor, one can easily calculate the contribution to elastic constants (see Das et al. (1977))
and these are, for a cubic crystal,

Cly = ky+py,  CYy = ky~py, Ci4 = P1s %)
d’€, dé, , .
where ky =V — 1 , py = — — | , V, = equilibrium value of V
ave ly, av v,

B. Two body central interaction in direct space

Let us write the energy per atom as
: &y =7 ;I ¢1(rp), (6)

where r, stands for ry;. We can expand this energy in powers of &, and from the second
order terms, we get the contribution to the elastic constants. The results are

1 ’ 1 !
Ci = Z—V; Z D12¢1("11)4, Cia=0Cyy = 270 D12¢1(7'l1)2(7'12)2, @)
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C. Volume dependent two body central interaction in reciprocal lattice
space

We may write this part of the energy/atom in the form
&3 = % }1;’ .V, G). ®

When the direct lattice is subjected to a Lagrangian strain %, it induces a Lagrangian
strain @ in the reciprocal space, given by

G = —FL+292%

Contributions to elastic constants obtained in similar way, are

1 g dp,

Cy = — E D%¢,G -2V, D, -

11 2Vo < G¢2 1 oG aV
G

1 z :’ , ¢,
Cip= ﬁ/; <Dé¢2G%G§— VoDG ﬁ/
G

Gi+ 4DG¢2Gf> +ky+p,,

Vo

(Gi+ G%)) +ky~ D,

Vo

Cuy = ~1— , DZqS GiG3+D GI+G
44 = A (Dg$2G1G2+D6dr(G+ G2)) + P, ®
G
here th erator D ——1 “6 k, =V, —62@@3 Py = — = E i
where the opcrator = g = and ]
p G G oG 2 0 op? y 2 v . Xpressions

for the higher order elastic constants may easily be obtained collecting the corresponding
higher order terms in the energy expansion.

3. Results and discussion

The pseudopotential parameter r, is determined from the equilibrium condition
0U/oV)|y, = 0, assuming zero pressure. Dunn (1975) also used the same procedure
and hence our values of 7, are the same as those of Dunn, which are 1.416, 1.940, 2.634
and 2.872 and a.u. for Li, Na, K and Rb respectively. The results of calculation of the
various properties for the four alkali metals are given in Table I and in Fig. 1, and compared
with experimental results.

Using the equilibrium lattice constant as the only input data we have studied the static
properties like cohesion, the second order elastic constants and their pressure derivatives
and the dispersion curves along the symmetry directions, The cohesive energy agrees ex-
cellently with experiment. The maximum discrepancy of about five per cent occurs for Li.
For the three other metals the agreement is almost perfect. The elastic constants agree
within five percent for Li and Na. For K and Rb the discrepancy varies from fifteen to
twenty percent and the calculated values are always higher. For pressure derivatives,
the agreement for dC,,/dp and dC,,/dp is surprisingly good, the discrepancy is less than
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four percent in all cases. But for dC,,/dp the discrepancies are much larger and vary from
ten per cent (for Na) to about twenty per cent (for Li, K and Rb).

In the case of static properties, it is found that the first order perturbation energy
plays a very important role and is more significant than the band structure energy. The
overall satisfactory agreement of static property achieved by the Ashcroft model indicates
that the estimate of the first order energy in this model is more or less correct.

or——

60}
1} N
oy =
[} B
] T
SN S TN - . O R S NS S Pl
02 04 06 08 10 04 020 00204060810 05 020
—q G- —=q Gt

40]
30 30

. moy ¥ l 03
X LK Ro |

= 20+ N 20k |

s 240 & _

. S T .
T 10 _ T 10 //' 1 ]EO§

02 0.l4 0606 10 05 020 0 6204060810 05 020

—=q g —=q g

Fig. 1a). Phonon dispersion curves in (100) and (110) directions for Li at 90 K. The experimental points
which are taken from Smith et al. (1968) are indicated by o for longitudinal branches and X and @& for
transverse branches. b). Phonon dispersion curves for Na. Experimental points are taken from Woods
et al. (1962). c). Phonon dispersion curves at 9 K for K. The experimental points are taken from Cowley
et al (1966). d). Phonon dispersion curves for Rb at 120 K. The experimental points are taken from Copley
et al. (1973)

In the case of dispersion curves, however, the results are very disappointing. In Fig. 1
the results are shown for (100) and (110) directions only. For the (111) direction also, the
disagreement is similar. A fair agreement in dispersion can only be achieved with widely
different r, values impairing seriously the equilibrium condition and all other agreements
achieved in static properties. It may be pointed out that the large discrepancies near the
zone boundary of the (100) direction has nothing to do with the omission of exchange
and correlation correction in the dielectric function. Also the inclusion of third and fourth
order terms in the dynamical matrix is of little consequence considering the large overall
disagreement.

Earlier Price et al. (1970), while studying phonon dispersion, used a widely different
values for the parameters for alkali metals. These values of the parameters could not
satisfy the equilibrium condition, nor did they reproduce other static properties in agreement
with experiments. So the authors had to parametrize the first order energy separately,
making the model inconsistent.
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Since the dispersion curves are mainly determined by the band structure energy,
the failure of the Ashcroft model here probably indicates that the estimate of the band
structure energy in this model is seriously in error. In the two-parameter Heine-Abarenkov
potential the first order energy is given by 4ﬂrf(1+% U)/V, which has the same form
as in the Ashcroft model. By a suitable choice of the parameter r2(1+2U, ,3) the good
agreement of static properties can also be obtained in Heine-Abarenkov model. But the
second order energy in this model is entirely different from that in Ashcroft model. One
would therefore expect that by a suitable choice of the extra parameter U, a much better
agreement can be achieved in the dispersion curves. This is exactly what has been found
by Brovman and Kagan (1974) in their study of Na with a Heine-Abarenkov pseudo-
potential. A unified study of the properties of all the alkali metals on the basis of this
potential is in progress and will be reported later.

One of the authors (D. Sen) would like to thank the Department of Atomic Energy
for the award of a Fellowship. The authors also gratefully acknowledge the financial support
received from the DAE.
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