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The propagation of plane electromagnetic waves in strong constant magnetic fields
is studied. It exhibits nonlinear effects (the generation of the second harmonics, field-depen-
dent modification of the phase of the wave) due to the vacuum polarization.

The propagation of plane electromagnetic waves in space, in the presence of a strong
homogeneous magnetic field, is studied here. According to quantum electrodynamics, this
propagation is nonlinear as a result of virtual pair creation and annihilation. Due to those
polarization effects the vacuum behaves as a medium in which nonlinear effects in the
propagation of waves are enhanced by the presence of a strong constant field.

The propagation of a single photon (or a very weak wave) was studied previously
([1-3]D) in connection with the analysis of the light spectrum from neutron stars, which
are surrounded by very intense magnetic fields. More recently, [4], the scattering of light
by light was studied in the limit of ultra intense waves. In the present study I am interested
in the intermediate case, when the background magnetic field is very strong, even of the
order of the critical field B, (B,, = m2c3/eh = 4.41 - 1013 G), but the wave is much
weaker, though still strong enough to show appreciable nonlinear self-interaction. To
describe this situation I use the effective Lagrangian derived from quantum electrodynamics
by Heisenberg and Euler [5] and Weisskopf [6]. This Lagrangian, rederived later in a very
elegant and concise way by Schwinger [7], has the following form,
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where
S = _%F/WF‘W = _;'(EZ—BZ)a

P= —-L1¢"™F,F, =E"B,
X% = 2(=S+iP).

As in Ref. [2], I use the unrationalized electromagnetic units and put ¢ = 1 = % (x = €3).
The field F,, is the sum of the electromagnetic wave field £, and the constant field F(,

Fuv = fnv+Fp(¢3)'

The applicability of the Lagrangian (1) is restricted to electromagnetic fields which are
not very rapidly varying in space and in time; the scale being set by the electron Compton
wave length #/mc and corresponding time h/mc?. Thus, even X rays can be well described
in this way. The following field equations, which are written in vector notation, follow
from the nonlinear Lagrangian,

0,B+r1otE = 0, )
oD—rotH =0, 3
divB = 0, (4)
divD =0, (5>
where
oL oL
D=—E+ —(B+B,), 6
o5 BT 0P( +Bo) ©
oL oL
H=—(B+B,)— — E. 7
BS( +B,) ap O]

Here E(z, t) and B(z, t) describe the plane electromagnetic wave and B, is a constant
background magnetic field. For the maximum effect I will assume, that B, is orthogonal
to the direction of propagation (i.e. to the z-axis).

Two linear polarizations of the wave are considered: the parallel mode (|| mode)
with the vector B(z, ) parallel to the direction of the constant field By, and the perpendic-
ular mode (L mode) with the vector B(z, #) orthogonal to B,. They behave quite differ-
ently.

The parallel mode may propagate alone, not generating the wave with the other
polarization. To prove this, I assume that at some instant ¢+ = 0 the L mode is absent.
It means that the component E|(z, t) of E(z, t) along B, and the component B (z, t) of
B(z, 1) orthogonal to B, vanish at ¢z = 0. Then it follows from Eq. (2) that 9,B, = 0 at
t = 0. From Eq. (3) we get:

[6L+26L(B+B)2] 0.E =0 =0
2 gp2 IR Grile=o >
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and hence
To obtain the above equality we used the following formula

oL oL

0, — =2
Y0P |,—0 opP?

(B +Bo)OE ;=0
which is satisfied if the Lagrangian depends on P through P2.

Thus, those components which were absent at ¢+ = 0 will not be generated at later
times.

The situation is different for the perpendicular mode. The parallel mode is always.
generated by the perpendicular mode; the assumption that the .| mode is present and the
|| mode is absent contradicts the field equations.

Both cases are treated in this paper by a perturbation method based on the assumption
that the ratio of the wave amplitude to the critical field B,, is small. One may then usc
the expansion of the field equations into powers of the vectors E(z, t) and B(z, ¢).

For the || mode alone the field equations up to quadratic terms have the following,
form:

aIB][(Z, t)—azEJ_(Zs t) = O: (8)~
_ B
0.E\(z,)~ny *0.B Wz 1) = ﬁ [7s0:2E . B, +Ei)+(—3?ss+)’ssng)6z(Bﬁ)]a %)
where n) is the index of refraction for the || mode in the case of a very weak wave, when
the linearlized theory may be used [1, 2],

ny = [Os=1sBo)vs] 1% & 147,,B3/2y, = 1+n,. (10)

BY 75 Vss» ¥sss I denote the derivatives of the Lagrangian (1) evaluated in the case when
only the constant field B, is present (i.e. when P = 0 and § = —B2)2),

_ oL _ 'L &’L
- 6S reo L] Vss = aSz P=0 4 Vsss = aS3 Peo

S=-Bo2/2 S=—Bg2/2 §=—Bg2/2

Vs

The following Ansatz solves Eq. (8),

Ei(z, 1) = f(z, m+g(z, s (11)
B"(Z, 1) = n[l[""f('c’ m+g(z, ’1)]’ 12y
a.8(z, ) = 8,f(x, m), (13)

which is consistent with the existence of e.m. potentials. I used here a convenient set of
variables:

T=o(t—nyz), n=o(t+n)2).
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1 assume that in the lowest order of perturbation g = 0, f(z, ) = Af{(z) and that in higher
orders the function f{r,#) has the form®: f(r, #) = Af[r+ ¢(z, #)]; the function ¢(z, %)
will be sought in the form of a power series. This means that in the lowest order we have
a plane monochromatic wave of arbitrary shape (function f is arbitrary) propagating along
the positive z-axis. In higher orders we allow for modulations of the phase of the wave
and for an additional term g(z, #) which changes the ratio of the magnetic to the electric
component of the wave. In the second order of this perturbation method I obtain from
Egs. (9) and (13):

4606,,g = _wAZn”’))lath(T)a (14)
0.g = A0.f(1)0,9(, 1), (15)
where

= -2 3y (1 —n? B2 16
Y= 2’)) [,))ss( —n||)+’ysss On”]' ( )

The solution is:
@(t, ) = —7 nyy1Af(Dn+ ¢(2), 17
gt n) = —% nyy A2 (D) +Cy), (18)

with two arbitrary functions ¢(7) and C(n). A special solution, obtained for ¢(z) =
= C(n), is

Ei(z, 1) = Af[t—5 nyy Af(Dn] —% nyy A2 X(9), 19)
By(z,t) = —nAf[t—3 n[]hAf(T)ﬂ]—— "1[)’1A ’f(x). (20)

This solution describes the wave in the || mode generating the second harmonics of the
same polarization. The phase of the original wave is modified, due to the appearance of
the additional amplitude-dependent oscillating index of refraction, n; = 1 +0n, +0n,,

5”2 = ylAf(T) = XEJ.(Ta t)/Bcr' (21)

The dimensionless coeficient y depends on the constant background field B, alone and is
given by the formula which follows from Egs. (1) and (10),

1= 71Be = ZntBcrygss

a 1 3 u?
— — T cothu+(z—u ysinh > u—% ———— |, (22)
2n w %2 sinh* u

where w = By/B,,.

11 adopt this special form of the function f to avoid secular terms in the solution.
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To obtain the approximate equality I have taken into account that y, ~ (4n)~! and
392 < 7 The coefficient y was computed numerically and is plotted on Fig. 1. It attains
its maximum value when the field B, is 3 times larger than the critical field. On Fig. 1 T show
also on, which measures the deviation of the index of refraction from unity due to the
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Fig. 1. The dimensionless coefficient % which measures the change in the index of refraction caused by
self-interaction is plotted together with the correction dr, to the index of refraction due to the background
field B, alone. Both are functions of the ratio w = Bo/Ber

background field alone. Coefficients y and dn, are of the same order of magnitude? for
B, up to B,,. The ratio y/on,; attains its maximum value (~ 0.8) when B, ~ B,,.

To describe the propagation of the L mode, field equations for both polarizations
must be used. Up to terms quadratic in E and B they are of the form:

atBJ_(Z, t)+5zE“(z, t) = 0, (23)

2 For very large B, (w — o) the function dn, will eventually level off tending to the value 38.7 - 10-5.
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B
niatE"(z» t)~+azB.L(Z= t) = _0 [('yss_’ypp'l'vsppB(z))at(E B )
7 =1

+75s0(B BL) +7,,0.(E EL)], 24
atBH(Z9 t)—azE_L(Z9 t) = 0: (25)-
-2 BO 2
.E (z, t)—n" 6ZB”(Z, 1) = % [yssa,(ZE”B L+ E l)—2ym,6t(E”B )
+ ( - 3?ss + VSssB(z))az(Bﬁ) + (yss - 2’)’pp + ysppB(z))az(Eﬁ) e yssaz(Bi)]’ (26)
where n is the index of refraction for the L mode in the linearized theory,
ny = [+ 7,Bo)]"? = 14y,,B3/2y,, 27
and
0°L o°L
Tor = o, 0 VT asertl,,
S=—Bo?/2 S=-Bp2/2

In the lowest order we take again a plane monochromatic wave of an arbitrary shape in
pure | mode, propagating along the posilive z-axis. It means that in this order

E”(Z, t) = Af(‘cl)a EJ.(Z: t) =0,
B_L(Za t) = nJ_Af(T’)s B”(Z, t) = O,

where v = w(t—n,z).
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Fig. 2. The dimensionless coefficient y, which measures the efficiency of the second harmonic generation
of the || mode by the L mode is shown as a function of w = By/B.,
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We seen then that the r.h.s. of Eq. (24) has no second order terms, so that the wave in the
L mode does not undergo any change in this order of perturbation theory. The solution
of Egs. (25) and (26) for the || mode has the form:

E(op = — M2 Ay = — T E2(z, 1) (28)
ne 1—-ning? 1—ning? IR 25
B“(Z, t) = —'n_LE_L(Z, t), (29)
where
B -
72 = 5 [rs(1=n1%) + 75,831 (30)

This means that the second harmonics with the || polarization is generated by the L
mode. The efficiency of this generation is a function of the background magnetic field.
The ratio of the amplitude of the || mode to the amplitude of the L mode is measured by
a dimensionless coefficient «,

Ey(z, D/E(z, 1) = KE(z, 1)/Be, (31)

nI IYZ_BE _ n__l—__lBOBcr[yspp + ’YSS’))pp/(’ys + yppB(z))] ~ 27I:BOB<:r'yspp
1 _niniz zys(ypp—'y”'l"yss')’ppB(Z)) 'ypp_yss

= (32)
The functions ysp,, 7,, and y,, were calculated numerically from the Lagrangian (1). The
coefficient x is plotted on Fig. 2. It attains its maximum value (K., =~ 3.7) when By ~0.5B,,.
The coefficient x is quite large. It is greater than unity in the wide range of the values of
B, from small fractions of B,, to about 5B,,. The reason for that is the smallness of the
denominator in Eq. (32) which expresses the fact that the birefringence of vacuum caused
by the presence of the background magnetic ficld is small; both modes propagate with
almost the same velocities.

Although phenomena predicted by this calculation are not yet measurable, they are
of interest since they are purely quantum effects of the vacuum polarization.
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