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A model which takes crystal symmetry into account is introduced to study stochastic
jumps of NH; groups in molecular crystals. The group theoretical method allows for the
solution of this model and for finding the incoherent neutron scattering law and the infrared
spectrum.

1. Introduction

The problem of stochastic jumps of molecular groups in molecular crystals and their
influence on quasielastic incoherent neutron scattering and infrared spectrum was extensi-
vely studied in many papers [1-11]. The most frequent objects of study were NH;, NH,.
CH;, CH,, groups (belonging to larger molecules). The first one — NH; is quite interesting
and it was discussed in papers [1-3, 5, 11]. In most models it was assumed that all the
stochastic jumps occur on the plane of the hydrogen triangle. The second assumption was
that the reorientation was either 120 degree jumps around the three fold axis of NHj,
or that the reorientation was a simple rotational diffusion on a circle {1,5]. Neither the
crystal symmetry nor its influence on NH; jumps was taken into account. It was thought
too complicated to include in the models.

However, the application of group theory often allows for the solutions of the models
with relatively high symmetry [9-11]. The example we will discuss in the present paper
is the model of random jumps of the proton triangle on regular dodecagon (the twelve-fold
symmetry C,,) which corresponds to the situation when the four fold crystal axis coin-
cides with the three fold axis of the NH; group. Such a situation is quite common in cubic
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molecular crystals [6]. The second and more difficult example is the model of the dode-
cagon with perturbed symmetry (only six fold symmetry C;) when after a structural phase
transition the four fold axis is replaced by a two fold axis in the crystal.

In the second Section of the paper we will solve these models using the methods of
group theory [9-11]. In the third Section the incoherent neutron scattering law and infra-
red spectrum will be calculated for the models. The paper closes with a short summary.

2. Group theoretical solutions for the system of Markov equations

2.1. General method

To describe stochastic reorientations of the molecular group the Markov equations
f12, 13] are used

d
i Py(t) = Z Py()Ay;, 2.1)

k

where the set of numbers 7, j enumerates the discrete positions of the molecular group.
P;(2) is the probability that the molecule orientation is the j-th one (at the time ¢). if at the
time ¢ = 0 it was the i-th. 4,; is a matrix of phenomenological constants which determine
the so called relaxation times and which are parameters to be fitted from the experi-
mental data. The diagonal matrix element A,, (for any k) is equal to the sum of all
remaining off diagonal elements from the k-th row taken with opposite signs.

The solution of the system of equation (2.1) may be casy if we assume that there exists
such a matrix T that [11]

TPTt = pii*e 17t = TiT =1 2.2)
Then also
TATT = A8 (2.3)
and
PL(t) = exp {4 - 1}. (24)

Applying the inverse transformation we can find the matrix P which is the solution of the
system of equations (2.1).

The solution of the system of equations of the Markov type reduces to finding of the T
matrix. For this purpose the symmetry of the problem must be defined.

We denote all possible orientations of a molecule by angles Q; where i =1, 2, ... N.
The symmetry elements g; that form the symmetry group G of the problem transform the
set Q; into itself: g,2, = Q..

We assume that

Py(1) = [ fH(QP(Q, QDf(Q)dQdL, (2.5)
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where 2 is an operator which does commute with all transformations of G and where
Ji» f; are basis functions which describe possible orientations of the molecule. For simpli-
city we take [11]

J(Q) = 6(Q—2). (2.6)

Let us note that the operator of conditional probability & is a two variable function
defined on the group G. The functions P; () are nothing else but a Fourier coefficients of
2 in the basis of natural functions Ji. It is simple to show that the functions f; form the
basis of the so called regular representation of G

R, f[1(Q) = f(Q),
Ry f{D) = fup(@), 2.7

where g;; = g;g; and ﬁgi denote the operator corresponding to g;. The regular representa-
tion is reducible and according to well known theorem [14] it is possible to decompose
it into the sum of all irreducible representations of G. In the system of new basis functions
corresponding to irreducible representations, the matrix P will be diagonal (or quasidiago-
nal) .

P:'i;ag = <zpi(ui’)"@le(vj’)>: (2.8)
where y,; is the i’-th basis function of the p-th irreducible representation of G. The indices
i, J give other equivalent to (ui’) enumeration of .

Because & commutes with all operations of G, then P{ 0 for i # j only when:
B =v,i’ = j" and a dimension of the u-th irreducible representation is n, > 1.
The matrix T can be found from the formula:

Vi = Z T:;f; 2.9

However, the matrix T from formula (2.9) is not the same as the matrix 7 from formula
(2.2) i.e., to be more specific — using T from (2.9) we sometimes obtain P44 a5 a quasi-
diagonal matrix. Such cases can however be dealt with less difficulties.

2.2. The calculation of the matrix T for group C,,

Using the projection operator g we obtain the matrix T

n : : A
Q#f] = F‘L @:;k(gt)Rg,fj ~ w(un)a (210)
gi
where 9y, (g,) is a diagonal element of the matrix of the p-th irreducible representation
corresponding to the element g; of G. For the symmetry group G = C,, we put into (2.10)

n, equal to one (only one dimensional irreducible representations) and N = 12.
Looking at the table of characters of C,, we can write

1 (2mi
Ty = ﬁexpigo—l)(k—l)}. @11
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2.3. The model of regular dodecagon (symmetry) Cy,

An NH,; molecule has a three fold axis. If a crystal four fold axis coincides with it,
the NH, molecule will be able to occupy with equal probabilities 12 different positions
{hence regular dodecagon).

The probability of a jump from a position i to & in the time df ~ 0 (for i # j)is [12, 13]

Pu(df) = Agdt. (2.12)

‘We assume that the probability of a 120 degree jump (and its multiple) which does agree
with the molecule three fold axis equals a - dz. The probability of other jumps which are
composed of a 90 degree jump with or without the 120 degree jump and which do change
the “apparent” position of NH; (with respect to the crystal axis), is b - dt. The constants
a and b are phenomenological constants which one can fit from the experimental data.
Then the matrix A has the following form:

=

¢c bbb ab b b ab b b
b ¢ b b b ab b b abb
b b c bbb ab b b albd
b b b c b b b ab b b a
a bbb c b b b ab bbb
b ab b b c b b b abdbbd
A=y b abbbecbbbabd| @i3)
b b b ab b b c b b b a
ab b b ab b b c b b b
b a b b babbbc b b
b b ab b b abb b cb
b b b ab b b abbdbb c|
where ¢ = —9b—2a.

In order to simplify the calculations we write 4 in the form A = cA;+ad,+bA;,
where A, A,, A5 are commutting matrices composed only of numbers i.e., they are inde-
pendent of any parameters and easy to diagonalise analitically.

According to the method described above we obtain:

Pdiag(t) =

1

X

X

Y

(2.149)
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where
A= —9—-3a, B= —12b, X =exp(dt), Y = exp(Br),
and finally
(k I 1l m 1 1 1l m1l 1 1
! k1 11 m1l 1 1 m1l |1
! 1 kI [ I m1l I 1 ml
I 11l k! 1l m1l I I m
m ! 1 1 k1 1 1 m1l 11
I m I 1 1 kK I I I m1l |
P=ly 0 mi 11 k111 mi| 15
I 11l m1l I I kI I | m
m il I I m 1 1 1 k 1 1 1
I m 1l 1 1 m 1l [ | k I 1
I I m il I I m1l I 1| k1
Ll o ml Il m I 1 1 k
where

All matrix multiplications were performed on a computer in Fortran.
If we assume in our model that » = 0 we obtain the old model of 120 degrees jumps
f1, 11]:

P(n) = %(1+2e—3at),

Pys(t) = Pyo(t) = 3 (1—e7>%). (2.16)

24. The model of a dodecagon with perturbed symmetry

In this problem, exactly like in the previous model, we assume that the NH; molecule
can occupy 12 different orientations. But now the symmetry of the problem is lower (Cs).
Such a situation exists when there occurs a small distortion to the crystal (for example
a structural second order phase transition) and the four fold crystal axis undergoes a tran-
sition into the two fold axis.

Positions the molecule can occupy form a regular dodecagon as before. Now, however,
one set of positions (let us say, the one enumerated by odd numbers) forming the regular
hexagon is distinquished from the other one. The positions of the first hexagon are the
“natural” positions the NH; molecule can occupy i.e., they are much more probable.



718

The second hexagon (even numbers) is simply a set of less probable positions — we will
call them the metastable ones.

We will assume that a jump from any odd position to any even one is executed with
probability ¢, dt (for very small time dt). The jump in the oposite direction is more proba-
ble — ¢, * dt where ¢; < c,. Now there are the remaining probabilities (of jumps inside
each hexagon) to define. The probabilities of jumps over the same angles are assumed
to be the same for both hexagons. Such an assumption seems to be natural.

Like in the previous Section, the 120 degrees jump (and 240 deg one) is executed with
the probability a - d¢. The probability of a jump inside one hexagon, which is composed
of a 180 degree jump with or without a 120 degree jump, is assumed to be b - dt. Now the
matrix A has the following form:

" Ay 620 b ¢ a ¢ b ¢ a ¢ b ¢ ]
¢ Ay ¢ b ¢, a ¢ b ¢, a c, b
b ¢ Ay ¢4 b ¢y a ¢ b ¢ a ¢
¢ b ¢ A ¢ b ¢, a ¢ b ¢, a
a ¢ b ¢ A ¢ b ¢ a ¢ b ¢
c; a ¢ b ¢, Ay ¢ b ¢y a ¢, b
b ¢ a ¢ b ¢ A4 ¢ b ¢ a ¢
¢ b ¢ oa ¢, b ¢y Ay o b ¢, a
a ¢ b ¢ a ¢ b ¢ A e b ¢

e a ¢ b ¢ a ¢, b ¢y Ay c, b

b ¢, a ¢ b ¢ a g b ¢y A o

e b e a ¢ b ¢ a ¢, b c, Ay |

; 2.17)

where

Ay = —2a—3b—6¢,, A, = —2a—3b—6c,.

2.5. The diagonalisation of the matrix 4 for the model of a perturbed
dodecagon

This is a typical example when the group theory is not sufficient for the solution of
(2.1). We can obtain P in quasidiagonal form at most. This form is however such a sim-
ple form that a few “tricks™ lead to the final solution with virtually no effort at all.

At first we start diagonalising A, using the same T matrix as for the problem
with the symmetry C,,. Because the operator # does not commute with all operations
of the C,, group (only with those belonging also to Cs) the transformation TATT will
not fully diagonalise the matrix 4

A = TATY = QA+ Ay +ady + bAy+ ey As+c, A%, (2.18)
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do not commute with one another; it is difficult to diagonalise

14
6
them in one single step. Therefore we will proceed in few simp

the transformation

’
Az, .

’
1»

The matrices A

le steps. First we apply

(2.19)

A" = STA’S,
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which diagonalises the matrices 4; and A;. It is possible to compose S in many ways.
11

We seek such form that Aj3', A;' remain diagonal and A%, 4" will become simple quasi-
diagonal forms. For S we take

-

J

1 1000O0O0O0O0O0O0OTOO
00 I 1 0O0O0O0O0OO0OTUO0OTO
0 00O0T1T1UO0OO0O0UO0OTGCTO
0000 0O0OT1T1UO0OVO0OTUO0O
1 00000O0OO0O0OT1T1TO0O0
S=—10 0 000 000O0O0T1 1
V2111 0000000000 (2.20)
0 0 1-1 0 00 0 O0O0O0OTDO
0 000 1-1 0 00 0O0O0
000 0O0O0TI1I-1 00600
0 000 O0OO0OO0OO0OT1—-1 00
~00000000001—11
In the last step we find that the block matrix
a=[92—“— ] @.21)
110X10
where
1 T4
’ NE
¢ = 2.22)
F
L !
'\/CI‘I‘CZ
transforms A" into diagonal form (A%*¢ = ¢~14'g):
I'O 7
D
A
B 0
A
i B
diag __
Adisg . , 2.23).
G,
A
0 B
A
B
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where

where

-

ky

P
I

P2
k,

P2
I,

P2

ks

k, = +
27 6(ei ) 6(estcy)

my

my

L

I, = ——— + — X
27 6ley+ey) | 6(cy+ey)

D1

D2

A = —3a —3b —6¢y,
B = —3a —3b —6c,,
.D = —661_"602,

C1 el 60 o 66 1s
C2 =1 = 6b = 6C 2.
After having finally calculated the matrix P we find that it is very complicated :

Iy, p myg po Lt p» m p, L
pr L pr my pp L, p my py
ky po i pp my py I, p, my
pr k: pr L pr my pr L py
I p» ki p» 4 po m p, I
pi L pi ke pv L pr my py
m p» L p2 ki py Lt py my
pr my P b pi ky pr L py
L p» my pp L py ki po L
pr L pn my pr L pi ky py
mg po i pp m py L p, Kk
pr my pi L pr my pr L py

- % @ xiiy.z

= eten ooy TETHID

¢y cy

- 6(c +cy)
41
= — -+
6(cy+cy)
Co
= ot
6(CI+62)

€1

- 6(c;+c¢3)

X+tZ+3W,

i i X+_1. Y-L1U
6(cy+cy) ° S
C2
— X+iz-1w,
6(01+C2) ° :
& x_1iy,
6(c; +c¢3)

Cz
1
- Z’

(1 _X)a

=2 _(1-X).

é(‘31 +¢3)

D2 )
L,

, (229
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We can check that for £ - <

C2
P, — for k=1,3,5..11,
£ 6(ci+¢3)
€1
P, - for k=2,4,6,.. 12. (2.25)
6(cy+¢3)

This means that after a long time the system forgets the initial state from which it started
at ¢ = 0. Only the final state is important.

We can further consider the following limits to the model:
1) If we assume that ¢, = ¢, = b, then the model undergoes transition to the model

of a dodecagon with C,, symmetry (as it should!).
2) If we assume that ¢, = 0, ¢, = o0, we obtain the following formulas:

ky = ++%exp (—6bH)+Zexp {—(3a+3b)t},
m; = g+ exp (—6br)—% exp {—(3a+3b)t},
l; = §(1—exp (—6b1)),
Pr=% ky=my=1,=p,=0. (2.26)

The probabilities of transitions to “metastable” states are zero. If we eliminate the
metastable states then the expressions (2.26) are the same as the probabilities of transitions
for the model of a regular hexagon [11].

As a closing remark let us stress that the calculation of the probability matrix P
without using group theory would be very complicated. As a matter of fact we still can
ask what is the use of such complicated formulas as given above. The point is, that to
obtain these forms we do not have to put in any real effort. All work, all formulae can be
performed analytically and neatly printed by a relatively little computer. The programs
are simple and in Fortran. There is no need to apply high level algebraic languages like
Reduce, Formac etc.

If we work without group theory and computer the effort is always incommesurable
with any eventual profits.

3. The application of the models

3.1. The scattering law for quasielastic incoherent neutron scattering

The autocorrelation function, so called intermediate autocorrelation function F for
quasielastic incoherent neutron scattering is well known [8]:

F(k, 1) = {exp {ikr(0)} exp {—ikr(f)}>, ’ (3.1)
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where hk is the transfer of the neutron momentum to the scatterer and r(0), r(¢) are posi-
tions of a proton in time 0 and time ¢ respectively. In the above formula only proton
positions are taken into account because only protons contribute considerably to inco-
herent cross section [8].

For both models of NH, rotation, examined in this paper, the correlation function F
for a simple molecule NH; has the form:

F(k, 1) = ¥, PiPyy(1) exp {ik(r,— 1))}, (32)

where i, j has the same meaning as in Section 2, and P; are probabilities of finding a proton
in the i-th position (at time 7 = 0).

In order to find the correlation function F,,, for a polycrystalline scatterer (the
monocrystals are rather something exotic for an “average” experiment) we have to average
over different orientations of k, because the NH; molecules in polycrystalline sample take
all possible orientations with respect to a fixed vector k. Knowing F,,, we can find the
scattering law for quasielastic incoherent neutron scattering

+

1
ST @) = 5 J exp (= iot) - dt * F(k, Dyoy

-

2sin (kR,) 2sin(kR,) 2 sin (kRy)
= L 50y | 1 4222205 e n
”{ (“’)[ A

2 sin (kR 2 sin (kR in (kR
+ (kRy)  2sin ( 5) | sin (kRe)
kR, kR kRg

L8 (1_ sin (kR4))F ry 3 (1+ 2 sin (kR,)

T kR4 T kR4
2 sin (kR) 2 sin (kR;) , sin (kR3) , sin (kRs)
“F kR, ° kR, * kR, * kR
, Sin(kRg)\ T ry r,
-3 = Fy+ 0 F F 3.3)
> kRs JI2+o? 0" @)+ ' 0’ 2+ 22t o (3:3)

{
where I'y = 9b+3a, I', = 12b, R, = 2a"s1n f— forn=1,2, 3, 4, 5 and where d is
g 2 :
the distance from the centre of a proton trlangle to any proton
As we sec the Van Hove function SFY for the model of the dodecagon with C,,
symmetry is composed of an elastic peak and two lorentzians with half widths I'y = 3a+9b,
= 12b. The corresponding form factors ar‘e presented in Fig. 1.
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0 b i
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L2
& 7 8

Fig. 1. The dependence of the elastic formfactor F, and formfactors F,, F, on dimensionless value of (kd)

The scattering law for the model of the dodecagon with perturbed symmetry is

S‘“°(k"")=6(cll+cz){( o[t (4 (3) w1 (3) (3))

= ] Lifif;)( 9(5) (%) (3) <)

var(s) ()~ G)
)]

r, 402 T I 401 T
il () e G e

I'y =6(ci+cy), Ty =6(b+cy),

where

F3 = 6(b+cz), F4 = 3a+3b+601,
Fs = 3a+3b+6C2,
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r sin (2kd sin B)
B = 2kd sin B

o 7 o T o T o T o T
Ff’;,lff(a) +fv<z - 5) +f(€ * 5) +f(€ B 5) +f(? * 5) +f(‘2‘ B 5)-

There is an elastic peak and five lorentzians with half widths I'y, I'y, I's, I'y, T's.

R

3.2. The correlation functions and the shape of the infrared spectrum

The correlation function for IR spectrum is given by [7]
F(t) = {u(0)u(2)>. (3.5)

where u(0), u(t) denote the dipole moment of a vibrational transition of a molecule at times
0 and ¢, respectively. The change in time of g is due to a composition of two processes:
pure vibration of the molecule and pure rotational reorientation. To make the dependence
of F on these two processes explicit, we will proceed as follows. Let us decompose the dipole
moment into “‘spherical” components:

# = ({1, B-1> Ho)s (3.6)

where
1 . "
My = ﬁ(l’l’x"—lﬂy): g = — U1, Ho = Uz

and
1
2(0)u(t) = =Z_1 H(O) it (2).

The molecules in a polycrystalline sample are differently oriented in space. We assume
that a certain molecule has at ¢ = 0 an orientation defined by Euler angles «(0), $(0),
9(0). We further assume (without loss of generality) that in the coordinate system fixed
in the molecule the dipole moment is #® and that u) = g = 0, pg # 0.

Applying Wigner rotation matrices D we obtain:

TROED W CONORIG) RO (3.7
Inserting (3.7) into (3.5) we obtain the formula for the polycrystalline correlation function:

F()gory = 3, {Dpn(e(0), B(0), y(0)Dy, (), BQ); 7DDt (O)ptr () a0.502,0) (3:8)

myn,r

where there is an additional average over a(0), S(0), y(0).
The common approximation to (3.8) is

F(t)pory & Y, {Dp(-- D5 )y Ly @), (3.9)

mynr
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where up*(0)uf()) is simply <u2*(0)ud(?)> multiplied by 1/2 for n = r = +1, or by
—1/2forn = —r = *1, or it is zero. The expression {uX°(0)uS(z)> is a pure vibrational
correlation function -— f;,,.(¢) (because is independent of the reorientation of the molecule).

Both models of NH; rotational reorientation used in this paper are planar. There-

fore it results that:
w(0) = o) = o,  B(0) = B(t) = B,

7(0) =7, () = v+ (t). (3.10)

Using the well known properties of D matrices we obtain:

1 :
Tl = Z Qf f {CDar B (apy) ™)
m=1,0

— (D @PNID;, _(aBy)e™ D>} L £ (DdedBaly sin B = fo0(£) {cos o))
= fvibr(t)frot(t)' (311)

The formula for £, is
Jrat(t) = {cos (1)) = Z P;P(1) cos gy, (3.12)
i.J

where g;; is an angle over which the molecule jumps from the i-th to the J-th position
(in time z2).
For the model of a regular dodecagon for which P; = 1/12 (for all i) we obtain

frot) = exp {—(9b +3a)z). (3.13)

The Fourier transform of f,,, gives the broadening of the vibrational peak and the shape
of the infrared spectrum is proportional to

et f D) T (3.14)
vibr Tf+a)2 ? .
‘where I'; = 3a+9b

For the model of a dodecagon with perturbed symmetry the time dependent correla-
tion function and its Fourier transform are

C
fal® = —Z— exp {—(3a+3b+6¢)1}+ —— exp {—(Ba+3b+6c)1};  (3.15)
Cl+02 CI +02
. () r, €1 I's
wotlt) eXp (—iwt) - dt = —=— + R 3.16
Jf () exp ( ) (e +ey) Ti+o® (e, +¢,) M+ (3.16)

where Iy = 3a+3b+46¢,, I's = 3a+3b+6c,.
Let us stress that the I', I, ... I's given above are exactly the same as the correspond-
ing I'y, I',, ... I's for neutrons.
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4. Conclusions

In this paper two models of planar rotation of the NH, group in solids are considered.
One is the model of a regular dodecagon and the other is a dodecagon with perturbed
symmetry. These models describe jumps of NH; groups when the three fold axis of NH;
coincides with the four fold (or two fold) axis of the crystal.

The models are solved analytically by the methods of group theory and the rotational
correlation functions are found for quasielastic incoherent neutron scattering and for the

infrared spectrum.

The results of the paper can be directly applied to the analysis of experimental data.
They can give a more precise description of molecular reorientations in some experiments
(see for example [1, 6]) provided the simpler models used up to now were found unsatis-
factory. What is more, the present models combined together can serve to fit the experi-
mental data at different temperatures of the crystal even in the case of phase transition
which makes the use of one model on both sides of transition temperature a little suspicious.

The authors would like to thank Professor J. Janik and Professor A. Fulinski for
stimulating this work and for encouragement. Thanks are also due to dr K. Sokalski for his
valuable comments and discussions on the group theoretical method used in this paper.
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