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Free encrgies of five alkali metals in the condensed phase have been calculated with
due consideration for Coulombian and hard core repulsive interactions using the distribution
formula of Dutta. The method applied here is similar to that of the Debye-Huckel theory
for strong electrolytes in solution. The only difference is that the value of the dielectric
constant, D, for the medium is taken to be one, i.e., the solvent is absent. The free energy

thus calculated is added to the contribution of kinetic energy to obtain the total free energy.

For experimental verification the free energy “based on H2,s” was calculated for a range

of temperatures from 298 K to 1000 K.

1. Introduction

The calculation of the free energy of any substance, particularly in crystalline form
lattice vibration, was fully developed by Einstein [1], Debye [2], Born [3] and others.
According to experimental evidences, the substances like alkali metals exist as free ions
and therefore the notion of ionic atmosphere is important. So for studying the thermo-
dynamic properties of substances like alkali metals, with due consideration for the Coulom-
bian and short range forces, the Debye-Huckel theory [4] with the necessary modifications
[5-11] should be duly considered.

The notion of an ion atmosphere is important in the theory of Debye-Huckel which
is practically accepted as satisfactory in the limiting case of extremely dilute solutions.
Although this theory has given a valuable insight into the nature of ionic solutions, there
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remains some unsolved questions of its validity when considering the mocroscopic picture
for solute ions together with the macroscopic picture for the solvent through the dielectric
constant, and secondly when the short-range forces between the ions, etc., are considered.

It is evident that in the pure state the short-range interaction particularly hard core
repulsive type should be taken into account. To take into account the short-range forces
of the hard core repulsive type, instead of using the Boltzmann distribution formula, the
distribution formula of Dutta-Bagchi [12] was used in the paper of Pal and Chakrabarti
[13]. The distribution formula of Dutta-Bagchi [12] really corresponds to the state where
binary encounters are very important. In the state where higher order encounters are
significant, this formula requires modification. In 1966, Dutta [14] modified it [12] from
the consideration of close packing. This formula [14] was used in the papers of Pal [15]
and Pal and Chakrabarti [16, 17].

In all the above theories concerning the molecular (microscopic) structure of solutions,
the dielectric constant has been used for the solvent which is a macroscopic property of
the system. Thus, there is a logical inconsistency when considering the microscopic and
macroscopic picture together. This difficulty can be avoided if the dielectric constant, D,
for the medium is taken to be one. This means that the solvent is absent or, equivalently,
the substances are in pure state. With this objective in view the free energies for alkali
halides in the solid phase for a range of temperatures from 298 K to 800 K. were recently
investigated [13, 16]. An excellent agreement was obtained between the calculated and
accepted values. In this paper this is done for alkali metals in the condensed phase using
the distribution formula of Dutta [14].

In this connection the following points should be noted. The force of interactions
between the atoms in a metal are electrostatic in nature and depend on the distribution
of outer electrons in space. The attractive force increases as the distance between the atoms
decreases until a limit is reached, when a short range repulsive force between the like
charges of nuclei comes into play. The metal atoms part with their valence electrons which
move through the volume of the crystal like an electron gas or electron fluid. It is the
attraction between the positively charged metal ions and the negatively charged electron
gas that binds the configuration of the system. Drude [18] and Lorentz [19] assumed that
the free electrons in metals could be treated as an ideal gas of free particles when in thermal
equilibrium and obey Maxwell-Boltzmann statistics.

2. Calculations

The complete derivation of the distribution formula of Dutta [14] was given following
a method developed by Dutta [20] in connection with the statistical investigations of real
gases. He also introduced a modified technique in which notion of coursegraining was
employed for taking into account the hard core potential in addition to other potentials.
The above method of taking into zccount the hard core potential has a wider acceptance
in the literature of Statistical Physics [21].

In this distribution formula, as assembly under consideration consists of N, and N_
particles with charges Z, and Z_, respectively. The forces are of regular type, so that the
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configurational space is divided into potential layers of potential —yy, — 95, ... — 9, ...
so that the potential energies in the n-th layer of particles of the first and second type are
Z ey, and Z_ey, respectively. These layers are again devided into cells of volume 5. If
b, and b_ denote the exclusion volume of the first and second types for particles of the
same types and b, _(= b_.) denote the same for particles of different types and if we

write
b B b _ b—jb. _ b—1b,_
P+ = l: s - = I: s Pj+ = b, ’ - = b

then a cell may remain vacant or may be occupied utmost by p, particles only of the first
type, or utmost by p_ particles only of the second type, or utmost by p;. particles of the
first type when it is already occupied by j particles of the second type or utmost p;- particles
of the second type when it is already occupied by / particles of the first type.

In 1966, Dutta deduced a distribution formula by considering the above mentioned
description of the assembly and from the simple properties of ions by a method developed
by Dutta [20].

In the case of an assembly of charged particles if it is assumed that the average mini-
mum approach of oppositely charged particles is very small compared to that of the particles
of like charges, i.e., b, < b, and b_ then the distribution formula of Dutta [14] is given by

_i[i_l e (pi+1)_ } 1
"= exp (v: £ Z.ep/kT)—1  exp {(ps+1) (UiiZiE’/)/kT)}Tl ' @

Here n.. is the number densities of positive ions and electrons at a point where the electro-
static potential is y. b = $7(2r)* is the volume of a cell so that a cell may be cither vacant
or occupied by p.. particles only,  being the radii of positive ions. v, are parameters of the
distribution, Z,. is the valency of positive ions, Z_ is the number of valency clectrons,
&, k, T have their usual significances.

Taking p, = 2

1 1 3
"= [ex'p_ (ve+Z.ep/kT)—1 exp {3(v;iZiaw/kT)}——1:| ' @

As sometimes assumed in the theory, when g — 0, the distribution is, on average,
uniform, i.e.,

Wo

1 1 3

mi=g bl b ©
blexp(wy)—1 exp3wy)—1

The charge density, g, at any point in the assembly is given by

0=e(m,Z,~n_Z_), @

where ¢ is the charge of an electron. Thus, for small values of y we have
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when
2
ey €
1, g = — 72
T < b Qoo bkT R
where
A;= 3B;+ (B;—1)—B
) ,
B, = nb

and C satisfies

p=0 p=1
The Poisson equation
4mo
Vi = — —,
v D

where

and

X

2 _ dne® [Z AiZ,-Z]

DkT b

The solution of the Poisson equation, subject to the boundary conditions

py—>0 as ro—oo,

and
J‘— ds = — —§ (Gauss’ theorem),
as given by Pal [15] and Pal-Chakrabarti [16] is
1= AR A i—_é
DkT 1+¢&, &7

where
&, = ya.

(5)

(6)

Q)

®)

©)

(10)

(11)

(12)

(13)

(14)
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The available electric work using the charging process [22] as given by Pal [15] and Pal-
-Chakrabarti [15, 17] is

(Z..8)°x (xa)?
= — In(14+ya)—ya+ , 15
D(ga) (1+xa)—yx > (15)
where a is the radius of a sphere whose volume is equal to the volume per conduction
electron given by
=V 1 4nad® 3\
M or = : 16)
N n° 3 ¢ <47m°) (16)

In this paper we have taken say

S =n=n’ D=1, Z,=2Z_=1,

so that
A4, = A = A%say), 17y
2 4re* (2A4° 18)
=%\ ) )
and
&x [ (xa)*
= — In (1+yxa)—ya+ . 19)
W Gy ﬁn( xXa)—yxa > (19
For one gm. mole the total work required in charging all the ions is
N’y [ (xa)*]
= — In(1 - ,
G | 1 —ra+ T |, @0)

where N is the Avogadro number.

On adding the contribution made to the free energy by the translational motion of
the elements and internal energy due to internal motion we obtain an expression for the
free energy of elements in a pure state as

= Nh? Ne&*y
M 2| T o
<27z = kT) ve| U9

A = NkT o |-
where M is the atomic weight of metals, ¥ is the volume of metals in ¢.C., e is the base
of the natural logarithm.

2
(X;') ] LINKT. (1)

[ln (A+yxa)—ya+

0 0 (4] aA‘
F} = HY—TS = HO+T|{—) . (22)
F2—H? /N
— L2~ s Nk—Nkln|——
T M
2n | — kT3 21,
N

NW Ne? 298
—[— s ] 5 Nkx — .

T T oard+g | T2 23)
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3. Results

From formula (23) the numerical values of free energies ““based on Hogs” were calcula-
ted from 298 K to 1000 K. The density, ¢,, of alkali metals at different temperatures,
t°C, were taken from Weast [23]. The ionic radii were taken from Kittle [24]. A table
of both the calculated and accepted values of —(Fp— Hogg)/T'is given in Table I. A compari-

TABLE 1

Free energies “based on H3ss” of the alkali metals in condensed phase

—{F$— H2g)/T (calories per degree mole)

-
298 K ’ 400K | 500K | 600K | 700K | 800K | 900K | 1000K | r[A]
| T | o | |
Calculated 670 | 750 | 824 | 889 | 948 1000 | 1048 .
Li (6.73) (7.60) | , \ 0.94
Accepted 702 | 726 | 772 | 827 | 887 947 | 10.08 |
i e |
Calculated | 1227 | 1301 | 13.70 ! 1432 | 1487 | 1539 | 1582 | 16.28
Na (12.24) (13.49) - (16.96) | 1.24
Accepted 12.31 | 12,57 | 13.09 | 13.68 | 14.29 ‘ 1490 | 1550 | 16.06
Calculated | 1565 | 1633 | 1700 | 17.61 | 18.44 | 18.65 | 1875 | 19.56
X (15.34) | | (16.74) | | (20.20) | 1.54
Accepted 1520 | 1551 | 1614 | 1699 | 17.81 | 1873 | 19.68 | 2065
‘ | | -
Calculated - 18.52 i 19.20 | 19.86 | 20.47 21.02 | 21.53 I 22,00 | 22.44
Rb (18.10) (19.60) | | . 1.68
Accepted | 1664 | 1693 | 17.54 | 18.27 | 19.09 | 1987 | 20.70 | 21.52
. . —
Calculated 2043 | 21.09 | 21.74 | 2233 | 22.88 ‘ 2339 | 23.85 | 24.28
Cs (20.16) (21.70) | | ‘ (25.23) | 1.83
Accepted 19.79 | 2007 | 20.62 | 21.23 | 21.85 | 22.44 | 23.00 | 23.55 |

son between the calculated and accepted values [23] clearly reveal that an excellent
agreement is obtained. The accepted values (in parenthesis) were taken from Pitzer and
Brewer [25].

4. Conclusion

In this paper the free energy was calculated by a method similar to that of Debye-
-Huckel. However the main difference is that instead of the electrostatic force between the
ions, the force is between the positive ion and electron. Here also short-range forces of the
hard core repulsive type in addition to the Coulombian interactions are considered. Also
when taking D = 1, the unsatisfactory feature of considering both the microscopic and
macroscopic picture together was avoided. Appart from the well known standard works
mentioned here [1-3], attempt has been made by others [26] to explain some thermodynamic
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properties of metals based on local model potential. In this local model, different types of
potential are taken into account but the cffect of the short-range interaction of the repulsive
type is neglected. The good agreement with experimental values provides stronger support

for our theory.

The authors are grateful to Professor M. Dutta, Professor-in-Charge of S.N. Bose
Institute of Physical Sciences, Calcutta University for his guidance and advice. Also we
express our heartfelt thanks to the refree for his valuable comments and suggestions.
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