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Phase transitions in ome-dimensional systems of hard-rod particles with internal,
rotational-like degrees of freedom are studied. The particles interact with each other through
the infinite-range, infinitely weak attractive Kac poteniial and through the nearest-neighbour
short-range potential. This also depends on the internal states of the interacting particles.
Exact results for the thermodynamic properties and for some correlation functions at zero
temperature are obtained. A simple criterion for the existence of phase transitions in internal
degrees of freedom is given. The calculated models seem to suggest that to obtain the rota-
tional first order phase transitions it is necessary to add to the contact hard-core interactions
the additional soft interactions, at least between the nearest neighbours.

1. Introduction

Phase transitions in one-dimensional models of dense molecular systems with rota-
tional; or some other internal degrees of freedom (IDF) were studied intensively [1-6].
For example, the phase transitions concerning rotation of nonspherical molecules were
investigated based on some Ising-type models (cf.e.g. Boccara et al. [7]), or more difficult
continuous models [4]. It was shown that molecules having a highly nonsymmetric form
(especially needielike forms) have a tendency toward liquid-crystalline behaviour {1, 3]
On the other hand, the mildly nonspherical molecules behave in a completely different way.
With such molecules it may happen that thermal motion produces a (cooperative) destruc-
tion of orientational correlations [4, 8]. Another type of the systems, which can be analysed
on the basis of an interaction which depends on IDF are those with isostructural phase
transitions [9-11].

The phenomenon of isostructural phase transitions is caused by the collapse of the
hard core of spherically symmetric molecules under the influence of very high external
pressures. The collapsing properties of molecules can be described by IDF [101.
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All the papers mentioned above deal with the phase transitions in the specific systems.
The purpose of this paper is to present a general analysis of what is the dependence of the
phase transitions (in IDF) on the shape of arbitrary nearest-neighbour interactions.
The problem is reduced to the study of equation of state and order parameters at zero-
-temperature. All discontinuities of these functions for T'= 0 are connected with the
phase transitions which can arise at 7' > 0 (see Section 3). Because of the simplicity of the
theory presented some of the earlier results obtained for so called two-state model [5] are
easily reproduced.

The outline of this paper is a follows. In Section 2, the model is defined and general
solutions for equation of state and n-particle probability distribution functions are given.
In Section 3, the properties of equation of state and order parameters at zero-temperature
are discussed. Section 4 presents the solutions of simple models with and without the rota-
tional phase transitions. Section 5 contains some final conclusions.

2. Description of the system

The Gibbs free energy
Consider a linear chain of classical hard rods with nearest-neighbour pair interactions:

o] r<lij

U(T—-—lij), r > lij’ (1)

Vij(") = V(l”i"’"jD = {

L =3 (Li+1). (1a)
Assume that the length, /,, and the soft part of the potential depend on the value of some
internal parameter, s;:

L=1(s), a<s;<b )
Li; = Usi 85)s (2a)
U = U(T’— ll.l; Sis Sj). (2b)

The thermodynamics of this system is given by the excess Gibbs free energy per
particle, g(p, T) [4, 12]:
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where

K(sj, ;41 = exp {—F o[I(s)+U(s;+ )]}
X oj? dre”* exp [ —BU(r; s, 5;11)] ®

and where p is the pressure, T is the temperature, k is the Boltzmann constant and & = f p,
B = 1/kT.

If periodic boundary conditions are imposed (s, = sSy.), the partition function
Qy can be evaluated by taking the trace of the N-th iterate of the symmetric kernel-K.

Hence [4]:
g = —kTInA,. {6)
where A, is the maximal eigenvalue of the Fredholm integral equation
‘;fbdle(S.p $2)4(s1) = 49(s5). @)
b
§a’(syds = 1. (8)
e

All physically interesting quantities, such as specific heat, equation of state, etc., are
then simply calculated by differentiation of g with respect to p or 7. For example, the
specific volume is given by the well-known formula

v(p, T) = (0g/0p)r- ®
The n-particle probability distribution function of Intermal Degrees

of Freedom

Physically interesting quantities, such as order parameters are the mean values of some
functions depending on IDF. Let us suppose that we have a symmetric function f{sy, 3, ...,
s,) and let us calculate the mean value {f):

w0 b L
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If Anax(h) is the maximal eigenvalue of integral equation

b
§ L(s1, 5,5 1)a(s, B)ds, = Uh)g(s1, b,

b
§ a*Gs,, W)ds, = 1, (12)

and periodic boundary conditions (Nn +i = i — 1) are imposed on the system, then the for-
mula (10) reduces to

0
ﬂ'max(h)lh=0' (13)

<f>: —Hﬁ %

The derivative of A,,,(h) with respect to % can be calculated from the formula
b
l(h) = j dsldsnL(Sh Sn; h)Qmax(»slr h)qmax(sm h) (14)

Because there is no phase transitions in one dimensional systems, the equilibrium state is
unique [13], and therefore,

UM Apon(B) = A » (15)
h-0
lim qmax(sm h) = Qmax(sn)‘ (16)
h-0

The derivative (13) is then given by:
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ah
 The second term is equal to zero since the integral is identically equal to one for

all z due to the normalization of the eigenfunctions.

The derivative (13) is then given only by the first term of (17):

b

04 .
E = fdsldsnﬂ(sla Sn; h)qmax(sla h)qmax(sm h)' (18)
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It should be noted that this result is similar to the Hellman-Feynman theorem of
quantum mechanics, relating the rate of change of the energy to the derivative of the hamil-

tonian.
The final formula for {f) obtained from Eqgs. (10), (12), (13), (18) takes the following

form:
Y = 0(1s oor S ts onr S)dsy ... ds,, (19)

where the n-particle probability distribution function is

max(SDK(S15 82)K (52, 53) oo K(Syee 15 5p)Tmax(5,
Q(Sl,..-,Sn)=q (s)K(s1, 52) (Znni)1 (Sp—1 _)q () (20)

A’max

One-dimensional chain in the Kac potential

All physical quantities calculated in the previous two Sections are analytic functions
of p, T for all T > 0. This is a consequence of the well known fact that there is no true
phase transitions in one-dimensional systems with short-range interactions for 7" > 0 [14].
Phase transitions can occur only in the zero-temperature limit. For 7" > 0 there are possible
only the so called pseudo-phase transitions [4, 5, 15], i.e., specific heat and order parameters
can change sharply but smoothly as functions of temperature. Therefore, if we want to
investigate the phase transitions in the systems described by Eq. (1) for T > 0, we must
introduce additionally some molecular ficld potential (MFP).

The simplest realization of such MFP is the Kac potential [16, 17]

p(Iri—7;) = —aye™"7, 4 >0 (21)
together with the so-called Van der Waals limit (y — O taken after taking the thermo-
dynamic limit).

When every pair of particles interacts through the Kac potential, the Helmholtz free
energy and the equation of state are [17]:

F(v, T) = CE l:fo(l’: - %:, (22)
P(v, T) = MC l:p(va T)—- z%:l > (223_)
Jo = g—pv, (22b)

where CE and MC denote, respectively, the “Convex Envelope” (in v) and the “Maxwell
Construction”. The p(v, T) and fo(v, T) in (22) have to be calculated in the absence of the
Kac potential. It is interesting to note that in the Van der Waals limit the exponential form
in Eq. (21) is irrelevant. The replacement of exp (—yr) by any positive function ¢(yr)
with

Ojad>(x)dx =1

does not change the result given by Eqgs. (22).
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A knowledge of F(v, T) and P(v, T) tells us whether or not the phase transition takes
place. It is, however, not sufficient to solve the problem of particle ordering within a given:
phase.

In order to investigate the structure of different phases we must calculate the order
parameters. They must be calculated with the Kac long-range part of the potential switched:
on. Using formulas (22)-(22b) we obtain

F(v, T, h;a) = CE [fo(v, T h)— %] ~ CE [g(p, T; h)— po— —H (23)

Now, the mean value (f) can be calculated by differentiating the free energy (23) with
respect to 4 and taking the limit # — 0. However, it is necessary to keep on mind that in
the region of coexistence of phases (given by straight-line segments of the CE construction)
the mean value { £ is not uniquely defined as the function of ». To avoid such ambiguities,
let us denote by CRM (Coexistence Region Modification) the procedure of removing of
all values of v belonging to the region of coexistence of phases (given by equation of state,.
P(v, T)). The mean value {f) will then be given by the formula:

O0F(v, T, h; a) :|
k=0

(fy = CRM [— e
_crmllce T:h a
= {% [g(p, ; hy—pv~— —v—]}

= CRM {J (51, -» S)f(S1, ---» 8,)dSy ... dS,}. (24)

3. Zero-temperature limit

In one-dimensional systems described by Eq. (1), the phase transitions can occur
only for T’ = 0. The zero-temperature phase transitions are strictly connected with straight-
-line segments (SLS) which appear in the equation of state and order parameters and are
usually separated by discontinuities. The increase of the temperature rounds of all such
discontinuities and thermodynamic functions become continuous in all arguments. For
example, the equation of state is a monotonically decreasing function of v, for T > 0.
However, true phase transitions can still be enforced at non-zero temperatures by switching
on the Kac potential.

The introduction into the system of the Kac potential modifies all thermodynamic:
functions in the manner shown by Egs. (22), (24). The most important is the modification
of the equation of state by the term —a/v?. This additional term breaks down the mono-
tonic behaviour of p(v, 0) for some regions on the v-axis and of p(v, T > 0) in the vicinity
of T = 0 (for arbitrary a > 0, the SLS of p(v, 0) form a typical “Van der Waals wiggle”).
After performing the Maxwell construction on p(v, T)—afv?, the SLS obtained form the
coexistence regions for various phases. Such regions are terminated by the critical points..
T, (T, > 0).
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For the investigation of phase transitions for T > 0 we require all the information
about the zero-temperature behaviour of the equation of state and about order parameters.
for the model without the Kac potential.

Equation of state at zero-temperature

At zero-temperature, the equation of state (9) can be obtained by differentiation of

In (A0 With respect to p.
We will find the exact form of g. The starting point is Eq. (7):

b b ©
j‘dSlK(Su 5,)q(s1) = j.ds1e_al(sl’s2) j d"e_w—ﬁv(r;sl’SZ)Q(ﬁ)
a a 0

ds;e” 0D exp {B[kT In | dre™ ~FUEsts0 ) 4(s))
0

E R W)

b .
~ [ dsge™"1) exp {— B Min [pr+U(r; sy, s5)]}q(sy, f = )
)

a

= /'Lmax(ps B— OO)Q(Sz)- (25}
Now, we rewrite Eq. (25) in an equivalent matrix form
N
lim On z K(Si> sj)Q(Sj) = )Lmaxq(si)a (26)‘
N— oo j=1
where
b—a . .
Oy = N s;efoy(i—~1), 0541}, i=1,..,N.

‘The dominating matrix elements in the equation (26) have the form

4 = O.Ne-ﬁ(g/li,isrjl)[W(p;sl',SJ)]’ (N - )

W(p; si, 5;) = pl(s;, s;)+Min [pr+U(r; s;, )],
)
and are symmetrically distributed with respect to the diagonal line, 5; = s;. The ratio of
the remaining matrix elements to 4 tends to zero when f — oo. Thus, at 7 — 0, all the

elements of symmetric matrix, K, are equal either to 0 or to 4 (K = K(4, 0)) and give the
following asymptotic form of Eq. (26):

det (K(4,0)—4-1) = 0.
Because
det (K(4, 0)~kA) = A°-det [K(1,0)—k] =0, & <N,
all the eigenvalues of the last equation are given simply by:

A=kd, (k— is a real number).
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Thus,
Amay ~ kg A = Kppgge ™ M B0,
g, T =0) = (Mm) W(p; sy, 82)-+const
and finally,
v(p, T=0)= 6_ }::Igl) {pl(sy, s2)+Mm [pr+U(r; sq, 521} @7

The correlation functions for T = 0

The same technique for the equation of state can be used to obtain the zero-tempera-
ture behaviour of the correlation functions {f(sy, ..., 5,)). The results are as follows:

0
s = h Min {Pl(sv s+ — [f(s1) +f(s2)]+M1n [pr+U(@; 51, 52)]} (28)

(s1,82)

0
{fs1: 520> = o Min {p(s1, 52)+1f(s1 Sz)+M1n [pr+U(r; 51, 521} (29)

(s1,52)

n—1

{f(sgy .-»8,)) = — Min p I(si Si41)
ah (S152, +e05 Sn)

i=

+hf(sq, ooer S+ E Min (pr+ U(r; s;, si+1))] , hn>=3. (30)
)
i=1

The useful theorem

Now, we restrict ourselves to the systems for which the phases are characterized only
by two order parameters, {f(s;)> and {f(sy, s,)). Also, we note that for small values of a the
term p(v, T) completely dominates over the attraction term —av=? in Eq. (22a). These
two facts and the discussion given at the beginning of this Section permit us to formulate
the following theorem:

For an arbitrary ¢ > 0, a transition with respect to IDF may occur if and
only if the short-range, zero-temperature equation of state p(v, T = 0)
possesses a horizontal part p = const for some v:v; < v < v,, and o(sy),

a(sy, 8,) are not chaotic distributions in this region of v. _

4. Examples

As an illustration of the theory given in the previous two Sections, we shall investigate
the existence of the phase transitions in some of the simplest models.
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Two state model

Let us consider first the system with nearest-neighbour pair interactions given by [5]:

r
U(r; sj, sj41) = (1— ZZ—> V(sps;41)s r<d

=0; r>d 31)
V(sj,sj41) = w; 8;, 8;+1 €(0, &0)

= (1—gd)w; s;€(ev, 0), 5;41 €(0,20) or vice versa

= (1—=95)w; Si» Sj41 € (80, 0). (32)

Assume that the length of the particle is equal to either d, or (1 —v)d, depending on its
actual internal state:

d 0<s<ser,0<ex1
= ? v s 33
is) {(1+v)d, o <s<o. (33)

Finally, in order to investigate structure of the phases, we define the order parameters as:
{fs1)> = <B(ea—s1)),
{f(s15 52)> = {B(e0 —51)0(c0—5,),

where 6(x) is the step-function. The simple calculations of equation of state and order
parameters, using Eqgs. (27), (29), give the following results®:

v Restrictions on the

{Slsd sy, 821 p 77 values of parameters
& &2 0 2<7 ‘ t<po<l1
1—6 ~
0 0 I I+v<v<2 O<v<d<1
—y
26(1— - 1-6 (1 —
0.5 0 Lé)—)w 1+l.<v<1+v | 1 < 24-9
» 2 ‘ 1—v» »
208 . e
1.0 1.0 W , 1<v<1+% | 1—gs < 24=0
v | — v

These results are identical with those obtained earlier [5] and show the possibility of
ordering in IDF.

* It should be noted that, to find the values of the order parameters for the low-density phase (p = 0),
the low density limit (v — o0 or p = 0) must be calculated prior to the low-temperature limit T'— 0.
The reversal of the sequence of these limits would result in unphysical values: < fs)> =<fsp,s2) =1
for the low density phase.
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The model with U = 0

This is the model of the system of rigid molecules with pure, hard-core interaction,
given by the molecule shape function /(s). The calculations of the zero-temperature equation
of state and the order parameters lead to the following results:

p=20 for v>d,

p=o for wv<d, (34
and (see footnote 1)
1

Sy = ;—,stf(s), v>d (35

—a

b b
1 v

{f(s1,82)> = (—b-:"‘a)zjj‘dﬁdszf(sb 5, v>d (352)

These results show that in the one-dimensional systems with pure hard-core interactions
there is no phase transitions with respect to IDF.

The simplified model of rigid rotators

The phase transitions from the hindered to the free rotation were often investigated
for an interaction depending only on a difference between the values of IDF of neighbouring
particles [18]. Now, we shall present the solution of the one-dimensional continuous
version of this class of the models.

Let us consider the system of rotators interacting via the potential:

U = U(; Isie1—sd) = U@s Isip—si+al); sie[—m, n] (36)

with a constant particle diameter, I(s) =
For such models, the integral equation (7) can be solved exactly. This integral equation
has all eigenvalues doubly degenerated with the exception of 4o, and

Jo= | KOs, aol9) = )
2. \/
A = f K(5s) cos (ks)ds, (37a)
g1 = \/_ cos (ks), gaux(s) = \/_ sin(ks); k=1,2,.. (37b)

Only the maximal eigenvalue A, contains information concerning the thermodynamic
properties of a given system. The appropriate eigenvector, go(s), describes the one-particle
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probability distribution of IDF. Keeping this in mind and using Egs. (6), (20), (37) we
obtain:

g=—kTh jn K(s)ds, (38)
! 38
oss) = 5= (38a)
olss, 52) = S 52) (38b)

2z | K(s)ds
where

K(s1, 82) = Klsy=s3]) = exp {—ad} | dre~#ochumeb,

The chaotic distribution of IDF (Eq. (38)) shows that there is no rotational phase
transitions in the systems with interaction given by formula (36).

5. Final remarks

The results presented in this paper show that it is possible to find all thermodynamic
properties for one-dimensional systems of particles with IDF. The explicit calculations given
for the systems with nearest-neighbour interaction, depending on IDF, and with the Kac
long-range potential indicate that the problem reduces to the solution of the Fredholm
integral equation (7).

The introduction of the Kac potential allows us to investigate the phase transitions for
T > 0, even in one-dimensional systems. In the case when the short-range part of the po-
tential depends on IDF, we obtain the phase transitions in which ordering of IDF does
occur. The appearance of such phase transitions is closely connected with the behaviour
of the equation of state and order parameters at 7 = 0.

To obtain all of these results, it is not necessary to specify the character of IDF —
it is sufficient that the interaction depends on them. Probably, the simplest identification
of the IDF is as the one-dimensional representation of the rotational motion. The calcula-
tions performed on specific models seem to suggest that it is difficult to explain the rotation-
al, first order phase transitions (i.e. as in liquid crystals) as the pure geometric effect,
that is, only by the contact hard-core interaction. It is necessary to introduce into the
system the additional short-range soft interaction, at least between the nearest neighbours.
It is, for example, the multipole interaction, or the interaction softening the hard core as
as in (31), (32). The above results are generalization of those obtained earlier by Zwanzig
[3] for needlelike molecules.

For the third of proposed model, with the potential interaction depending only on
difference between the values of IDF of neighbouring particles, the integral equation (7).
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can be solved exactly. The results are the same as for classical one-dimensional Heisenberg
model, i.c., there is no phase transition in IDF. This result remains valid even after switching

on of the Kac potential.

The author is indebted to Professor Andrzej Fulifiski and Dr Krzysztof Rosciszewski
for critically reading the manuscript and for many valuable discussions. He is also grateful
to Organizers of Workshop on Solid State Physics in the International Centre for Theoreti-
cal Physics, Trieste — 1979, where parts of this work were carried out.
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