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GROWTH AND DECAY OF WEAK MHD WAVES IN GASES
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The propagation of weak MHD waves has been studied in gases at very high tempera-
ture. The law of propagation has been determined and the growth and decay of waves has
been discussed. A Bernoulli type differential equation governing the local and global behaviour
of the wave amplitude has been obtained. Some particular cases of interest have also been
discussed.

1. Introduction

Tn many new technological developments the effects of thermal radiation play a very
important role in the determination of the flow field. A good deal of work has been done
on the problems of radiation-gas dynamics with radiative heat flux effects [1-4], but very
little work has been done by accounting for radiation stresses. In this paper our main
academic interest is to study the growth and decay of weak MHD waves by accounting
for the effects of radiation pressure and radiation energy and to examine the local and global
behaviour of the wave amplitude during propagation.

We assume an optically thick gray gas with such a high temperature and low pressure
that the radiation pressure number R, is not negligible, but the profiles structured by radiant
heat-transfer terms are assumed to be imbedded in the discontinuities. The flow field is
restricted to be an ideal radiating gas in which viscous and heat conducting terms are
negligible. When the temperature of the gas is of the order of 10° K or more, the radiation
pressure and radiation energy density must be taken into account in determining the flow-
-behaviour.

Now we assume that there exists a moving singular surface X(¢) of a weak discontinuity
across which the flow and field parameters are continuous, but their first and higher order
derivatives are discontinuous. Such a discontinuity is defined as a weak wave or a disconti-
nuity. In the subsequent analysis we shall study the law of wave propagation and the global
behaviour of its amplitude during the course of propagation.
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2. Law of propagation

The fundamental differential equations governing the symmetric MHD flow under
consideration are
do do du  oaou

8 - — +— =0, 2.1)
ot +u6x+gax+ X (2.1)

Ou ou oh 0 0 2h
0— +ou— + — +(1+4R) 2 —42R % LT =, 2.2)
x  0x x o  0x x

=0 (2.3)

ap p ¢ op
1+12(v—=DR.} — — 16(v—DR = — +{1+12(v—DRu —
{ +12(v—-1) p} ot {v+ (v—1) p}g 2 +{ +12(v—1) p}uax

e 160—DR} L 92 _ g, (2.4)
¢ Ox

where x denotes the distance from the centre of symmetry 0. P> 0, 4, h and v respectively
denote the pressure, the density, the velocity of the gas, the magnetic pressure and the heat

exponent of the gas. R, is the radiation pressure number which is defined as

radiation pressure  pg

» S = p—

gas pressure j/

a =0, 1, 2 for planar, cylindrical and spherical symmetry and # = 0, 1 for azimuthal
and axial magnetic field respectively. The system of equations (2.1) to (2.4) is quasi-linear
and admits discontinuities in the flow field, We assume the existence of a weak discontinuity
as a singular surface 2(¢) with boundary conditions

[p] =0, [Q] = 0, [u] =0, [h] =0,

0 0 0 oh
[%} # 0, [—Q] # 0, [—”] # 0, [-] # 0. 2.5)
ox | ox 0x ox

[Z] denotes the discontinuity in the quantity enclosed. The geometrical and kinematical
conditions of first order for a singular surface of order one can be expressed in the form [5]

[E] = B, [6_2] = —BG, (2.6
ox | ot

where Z stands for any of the flow variables, B is a scalar function defined over 2(z). G is the
velocity of the surface 2(f) into a uniform medium at rest.
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Taking jumps in equations (2.1) to (2.4) with the help of (2.5) and (2.6) we get

(u—G)[+l =0, (2.7)

o(u—G)A+n-+(1 +4Rp)§—4—ZRPC =gl (2.8)
(u—G)n+2hi = 0, 2.9)

{1+120— DR} (u— G)é + g (+16(—DR,} (G—w) = 0, (2.10)

where

(], L[], o[, o[
=[] 2=l =[5 - (5]

From equations (2.7), (2.8) and (2.9) we get

_ (=0, _-@-6) _  (1+4R)(u=G)

A =
0 o {2h—o(u—G)*—4pR,}

. (2.11)

Substituting from (2.11) in (2.10) we get,
A{1+12(v— DR, }o{b> —(u~G)*} +vp+20(v— DpR,+16(v—1)pR2] = 0. (2.12)
The assumption that X(¢) is a regular singular surface, implies that 1 ¢ 0. Hence we obtain
u—G)* = b*>+C32, (2.13)

where

c - B[v+20(v—-1)Rp+16(v—-1)Rf,:,
o {1+12(v—1R,}
is the speed of sound in radiating gases and 5 is the Alfvén speed. We assume that the
medium in front of the propagating surface 2(¢) is uniform and at rest. For this case the
speed of propagation is given by

G* = C?, (2.14)
where

C2=b+Cq

which is the effective speed of sound of a radiating gas. Consequently the relations (2.11)
reduce to the forms

L_Gl_Gn _ —(1+4R)GE

e s 2.15
@ 2h  {2h—0G*—4pR)} (213)
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3. Growth equation

Differentiating equations (2.1) to (2.4) with regard to x and taking jumps across ()
and making use of the geometrical and kinematical compatibility conditions of second
order due to Thomas [5] we get,

frol = =15 Lopay 20
—Gl{+0l = {& + 204+ X}, 3.1)

oA . p._ . 32 R p 2
= 0GI—(1+4R)E+4 =R I+ = (ER, —7j—12 -2 £ -20 = (?R,—~(1—n) =1,
e =0 ( p)S 0 ol QCép 7l pé QZC p—( n)Xn

(3.2)
_on ) . 2omhi
-G+ E +3nA+2hA4- =0, (3.3)
{1+1206- 1R} fs_f = {1+120— DR, }GE+36(v—1) % GE*—48 % GEL
—{v+16(v—DR,}p <Z+ i;) +64(v—1)p %’ A
—{(v+D+76(—DR,}AL, (34

where

u . [d% . o ’h
Z =<3l C = PR C =it~z ﬁ = ~ 2
0x ox ox ox
and X gives the position of the wave whose configuration can be represented by X = Z(?).
The equations (3.1) to (3.4) can be rewritten after some manipulations in the forms

o .
L Ge—oitD, (3.5
ot
54 i} N
Q‘S; =QG/1—(1+4RP)6+4ERPC—T]+C, (3.6)
5 ]
_’:- = GA—2hI+F, (.7
o&

A— = AGE—BI+E, (3.8)
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where

A= {1+120-1R)}, B = {v+16(w—1DR,},

—12R 32R P (1—n)2y
c= ey g a0 g BT
p ) ? " X
D 2ar 4 22 Y P
- X bl - 1/’ X >

E = 36(v—1) "G:Z —48(v— 1) L GEL+64(v— 1)p—"/1c

Boi
—{v+64(v—DR}JAE - AAE— X

Eliminating the time-derivatives in equations (3.5) to (3.8) by using equation (2.15) we get

- (1+4R) F c D b*

Gl—ol = oE—BD 14+ — 3.9

‘- 2AG2( )+ G2+ 3 +G2 (39
. A _ @E D

- o= —— -, 3.10)

4 5 o¢ e G (3.10)
D F

P~ = —b2>= + 3.11

{~1f e e (3.11)

Using equations (3.9), (3.10), (3.11) and (2.15) in equations (3.1) to (3.4) we get,

%iz_z _Q%lz_li;, (3.12)

L e g S (3.13)
% _— Q‘;ZZA e G”Tié, (3.14)
% - Z; 2_ G;”, (3.15)

where

_j 2 % 2
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_ (1+4R,) [ —36(v—1)R,B’ N 48(v—1)R,B  64(v—1)R,p
M2 = 504G poAZ oA 2

B 2B
D+76(v—-1DR.} — — —
+H{+1)+76(v )p}QA Q}

AN 6R, B*> 16R,B N 10pR, 105,
e  Gp® A*  AGo* T Go* 20 TT°f°
Vb
F Ce-

b
For the case M, = = 0, the equations (3.12), (3.13) and (3.14) are in agreement with

the corresponding ones in [7]. The equations (3.12), (3.13), (3.14) and (3.15) are the funda-
mental differential equations for the variations of the quantities 4, {, ¢ and 5 along the
normal trajectories of the wave front 2(¢).

ou
Now we define 4 = [6_:' as the amplitude of the wave which undergoes continuous
x

distortion during propagation. The amplitude A of the wave is a function of time and we
expect it to either grow or decay in time. If X, = Z(¢,) represents the position of the wave
at some fixed time ¢, before it breaks down, the position of the wave at time ¢ is given by

X = Xo+C.(t—1), (3.16)

where C, is the speed of propagation into a constant state at rest. In view of (3.16) we can
write

oA dA

—=C,—, 3.17

ot * do (3.17)
where

T = X—Xo.
Using (3.16) and (3.17) in (3.12) we get,
dA
M2, (3.18)

do ' Xo+o = C?

‘The equation (3.18) is the required growth equation which governs the growth and decay
of the wave. The equation (3.18) is reducible to linear form and has a solution of the form:

<1+ i)‘lﬂ
Mo) = —— o

1 R X o \t™" 3’
e )™
Ao (1—p)C; Xo

where A, is the initial wave amplitude at time 7.

(3.19)
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4. Local and global behaviour of wave amplitude

The solution (3.19) for the wave amplitude A(¢) can be put in the form

2 ouzA
No) = 1— <X—: + %) o +0(c?). (4.1)

For the local behaviour of 4 the last term of the right hand side of (4.1) is insignificant
and hence we conclude that:
(i) If 4, is positive in the case of an expansion wave, the wave amplitude A will locally
decay.
- (@) If Ao is negative in the case of a compressive wave there exists a critical value
2 b
A, = usCe
Hadop
decay for i, < 4. For the global behaviour of A(c) we observe from (3.19) that it
will continuously decay and ultimately tends to zero in the case of 1, > 0. When Ao <O
the amplitude 4 tends to infinity after a critical time #, given by

of |20| such that the wave amplitude A will locally grow for |i,] > Ae and

Xo Xo {1 (1‘/11)Ce211/(1_”1)

+ s
C. Ce. 012X o) Aol j

t, = to—
The parameter u, <1 for all practical problems in MHD flows. When A — o0 as ¢ —» t.,
a compressive wave discontinuity will break down and a shock type discontinuity will
appear spontaneously. The underlying fact is that as a consequence of exceedingly large
gradients the flow parameters themselves become discontinuous and the flow can not be
maintained without the presence of a shock wave. When 4, < 0 and o] < A, a compressive
weak wave will locally decay for a short time and later on it will grow and terminate into
a shock wave after a finite time ¢,.

5. Particular cases of interest

1
s )ce, the growth
29

() When R, =0, A=1, B=v,, M; =0, p, =0, u2=<

equation (3.19) reduces to that of Thomas [6] and hence all his conclusions will follow.
(7)) When M, = 0 and « = 0, 2 the solution (3.19) is in full agreement with that of
Srinivasan and Ram [7] and hence their conclusions follow.
(#if) For cylindrical symmetry with an axial magnetic field (@ =1, n = 1), the solution

(3.19) assumes the form:
o \~1/2
Aol 14+ —
(+5)

ﬂ.(O’) = — s

H2040X o \/ 4
14+2——— I+ — —1
(5
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with the critical time

: Xo Xo . CZ, ?
tc = to - + _]. + .
C. C. 2002 X 9|0l

(@) For a cylindrical symmetry with azimuthal magnetic field (n = 0, o = 1), the
solution (3.19) assumes the form:
. —1/2(1+M2p)

Xo

Mo) = ; 20sh0X o . p 1/2(1+Mz2))
(1-MHCE Xo
with critical time
X B 1—M2)C2 YA ~Ms™
tc=t0—_().+__9.{ (__f)_}
C. C. 20p2X o) 4ol

(v) For a planar wave case with axial magnetic field (x = 0, n = 1) the solution (3.19)
assumes the form:

Mo) = Ao{l ‘|'Q.112/100'/Ce2}'1

with critical time

[, = tgF ——— .
° ozl ol

Thus we see that all particular cases of interest are derivable from our result (3.19).
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