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SELF-PRECESSION AND FREQUENCY SHIFT FOR AN
“ ELECTROMAGNETIC WAVE IN A DISSIPATIVE PLASMA
MEDIUM
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Amplitude dependent frequency shifts and precessional frequencies have been obtained
for an elliptically polarized transverse monochromatic wave propagating in a dissipative
unmagnetised plasma medium. Two frequency shifts and two precessional frequencies are
obtained, one of the frequency shifts and one of the precessional frequencies are due to dissipa-
tion in the medium. Numerical estimations for some values of the parameters have been
performed.

1. Introduction

Nonlinear wave-length and frequency shifts for monochromatic waves travelling in
a plasma have been obtained by several authors [1-4]. Recently Arons and Max [5] observed
that when a transverse elliptically polarized wave propagates in a plasma medium, the
nonlinear effects give rise to precession of the polarization ellipse such that the ellipticity
remains constant. They also obtained the frequency shift and precessional frequency for
an elliptically polarized wave in a cold, unmagnetised plasma. Here we have obtained the
nonlinear frequency shifts and precessional frequencies for an elliptically polarized
transverse monochromatic wave in a cold dissipative unmagnetised plasma, including
relativistic corrections. Two frequency shifts and two precessional frequencies are obtained,
one of the frequency shifts and one of the precessional frequencies are due to the dissipative
medium. In the absence of dissipation, we recover the earlier results.

In the last section we have discussed some observations, by taking some numerical
values of the parameters.
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2. Basic equations

We consider a stationary, homogeneous, unmagnetised cold plasma which is charged
but neutral before perturbation. The motion of the particle is relativistic and the effect
of dissipation is included. We start with the set of cold plasma equations with Maxwell’s
equations, which are

on
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where 7 is the electron number density, o the electron velocity, E and H are the electric
and magnetic field intensities, ¢ the velocity of light, n, is the uniform background ion
density and v is the collisional frequency, which is constant and greater than zero. We seek
a Krylov, Bogoliubov and Mitropolsky perturbation expansion in the form

E = eE, +&%E, + ...

n = no+en,+ein,+ ... ©)

Since the precession is generated by nonlinear interaction between the wave and the plasma,
and the pregession is.absent in the linear approximation, we can write

0 = 20, +%0,+ ... (8)

where 6 is the angle generated by the rotating axes in time #. For simplicity, henceforth,
we shall write 8, as 6.

The connection terms are functions of the amplitudes and the phases of the elliptically
polarized transverse monochromatic wave and ¢ is a perturbation parameter. We consider
that the wave is propagating along the x direction. It is almost periodic, with period 27/w
and wave length 27/k, where @ and k are the frequency and wave number of the wave,
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respectlvely, in the linear approximation. In the spatial problems, let the linear approxima-
tion for v be taken as (Tanenbaum [6])

0, = €™ (v cos p+0"" sin y) )
where y = kx—wt, v’ and v"’ are real constants. Supposing k> y and w > w,, then the

dispersion relations are found to be

2
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where w, is the plasma frequency. To avoid some avoidable complications in our calcula-
tions, we can neglect y from Eq. (9), because |y| < v. Hence the first order approximations
of the field equations becomes
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The second order approximations are found to be
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3. The third order approximation

If E denotes the sum of all parts of the electric vector upto the third order approxima-
tions, the equation upto the third order approximation reduces to
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Obviously
0 0 o .
[(55 -V +w? ) < e —c V2>] E, = first harmonic part of the
right-hand side of Eqg. (12). (13)

Again, since the principal polarization axes of the elliptically polarized wave can
rotate about the direction of propagation due to nonlinear sources as the wave advances
in time or in space, we rotate the principal axes in the yz plane such that the wave can
propagate along the direction of the x-axis. The ellipticity remains constant throughout
the propagation. Let the axes rotate through an angle 0 in time 7 Then we can write
(Lass {7])

Y dZ o 4 .
PPl (x>< ) (14)

- . . . . d . o
where A is the field variables in the rotating axes and oy is the derivative with respective

to the rotating axes. Neglecting higher terms, the second and the third derivatives with
respect to time are found to be
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where x, y, z are the unit vectors along the three mutually perpendicular directions.
Since the effect of precession is observed to be present at the third order approxima-
tion, Eq. (13) reduces, in the rotating frame, to
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4. Frequency shift and the precessional effect
We assume the total phase to be kx—(w+Jdw)t where dw is the frequency shift of
. do
the wave. Again, let —— be the precessional frequency of the wave. After some algebraic

calculations we observe that Eq. (16) will be the linear combinations of the co-efficients
of ysin v, y cos v, zsin p, z cos p etc. Since the solution is to be periodic, it follows that
the co-efficients of cos v and sin ¢ must vanish independently. Therefore we only equate
the co-efficients of y cos v, zsin y, y sin v and z cos y from both sides of Eq. (16), then
four equations are obtained which are as follows
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In the nondissipative medium (when v = 0) Eqgs. (19) and (20) do not exist and Egs.
(17) and (18) become identical to the earlier obtained results, if our procedure was adopted
by Arons and Max [5].

The frequency shift and the precessional frequency from the equations (17) and (18)
becomes
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dt  2(0* )| (do*—w?)?+40®V? a
From Bgs. (19) and (20), the frequency shift and the precessional frequency becomes
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and
ao” 00" K 02(20” — k)

Tar 40{(40® — 02 +40*v?} (24)

Thus we get amplitude dependent two frequency shifts and two precessional
frequencies, when a nonlinear elliptically polarized wave propagates in a dissipative medium.

) .. do
The frequency shift dw'’ and the precessional shift e exists due to the dissipative

media. If the medium is nondissipative, the co-efficient of y sin y and z cos y in Egs. (16)
becomes identically equal to zero. Hence in the nondissipative medium (v = 0) we shall
get one frequency shift and one precessional shift which are
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Eq. (25) satisfies the results of Stuijter and Montgomery [3] for the plane wave solution
and Eq. (26) the results of Arons and Max [5].

The second terms in the third bracket of Egs. (21) and (22) are due to the relativistic
effects but no relativistic effects are to be observed in Eqgs. (23) and (24) whose existence
is due to the dissipation in the medium.

In the non-dissipative medium, the frequency shift looses some energy, because in
equation (25) the relativistic part is greater than the nonrelativistic part.

5. Wave member shift

For the boundary value problem, a similar procedure is adopted. We assume here
that the total phase is (k +6k)x—wt, where 8k is the wave number shift of the wave. Let
dfjdx be the precessional frequency of the wave with respect to space. As before, we get
two wave number shifts and two precessional frequencies which are
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and
do" V0 K ol20” — of)
dx.  4c*k{(40*— 02 +40*v?}

(30)

The same conclusions can be drawn here as in the previous section.

6. Numerical estimation

We observed from our field equations of the first order approximations, that the
Poynting flux averaged over time period is
2

¢ ckm

<P>=Z‘

" . zwez (V2+602) (U’2+U”2). (31)

For a simple illustration of our result, we consider the magnitude of the Poynting flux
to be = 1023 ergs/cm? and the other numerical values as w =~ 105 ¢ps, w ~ 10** cps,
k=~ 3.3x10% Using these values and assuming @ > v, we obtained from Eq. (31)
v'+0v"” & 2.6 x101°. Eqs (21) and (23) come out to be dw’ &~ —3.4x 104 and dw” ~ 0.25
x 107, The negative sign in d’ indicates that the propagating wave will have the red shift
and the positive sign in dw'’ indicates blue shift. The reason for the red shift in w’ is that
in Eq. (21) the relativistic effects predominate over the non-relativistic terms, causing
thereby the negative sign in dw’ i.e. the red shift of the frequency, which means that the
wave looses some energy.
Further, from Eqs (22) and (24), we obtained

de’ wgv'v” 3a)12,
— R ~ —14x107%
dt 20c? (16602 8
and
de//
2~ 5%x10°
dt

provided we assume v’ & v'’. Generally, the collisional frequency corresponding to the
dissipation is very small in comparison with the frequency of the wave propagation. At
present we can neglect the effect of dissipation from our illustration. By considering the
different ratios of @ and w,, different values of the shifts are obtained which are shown in
the following chart.

Or o~ S = ﬂ N ok’ = d—O, ~

w dt dx

107! —3.6x10'° —1.4x10® 1.21 4.5%1073
1073 —3.6x10° —1.4 1.21x107* 4.5x%x1071
163 —3.6x10? —1.4x%x107¢8 1.21x1078 45%x1071%
1077 —3.6x1072 —1.4x1071° 1.21x107"2 4.5%x107%7

The following conclusions can be drawn from the chart.
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(?) as the difference between w and o, becomes larger and larger, the frequency shift,
wave number shift and the precessional frequencies become smaller and smaller,
(if) the spatial precessional frequencies are much smaller than the temporal precession-
al frequencies,
(iii) the frequency shifts (both spatial and temporal) are greater than the precessional A
frequencies i.e.
do
dx l ‘
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