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In this paper we use the phase representation formalism which was introduced by
I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. Al14, 1101 (1976) and applied in sub-
sequent publications to the calculation of energy levels of a dressed atom (Bull. Acad. Pol.
Sci. Ser. Sci. Math. Astron. Phys. 26, 1501 (1978) and Acta Phys. Pol. A57, 599 (1980)). The
algorithm for the calculation of the density matrix proposed earlier will be used here to study
the resonance fluorescence.

1. Introduction

In a series of recent! papers [3, 4] we have applied a new simple numerical method
to the calculation of the energy levels of a dressed atom and used it to study different
resonances phenomena. Our methods have been based on the phase representation [1, 2]
which is very useful in the analysis of quantum processes taking place in the presence of
intense photon beams. As it was shown in [1] and [4], the phase representation is also
useful in the study of atomic density matrices.

In this paper I shall apply the algorithm introduced in II to the study of resonance
fluorescence.

In Section 2 I give a brief presentation of our algorithm introduced in I. Its application
to’ resonance fluorescence is presented in Section 3. Section 4 contains conclusions.

2. The algorithm for the calculation of atomic density matrices

For the sake of simplicity I assume that the atom is dressed by the ficld polarized
linearly and the atom has two levels. Our algorithm can also be used in the case of the
dressing field with an arbitrary polarization.

* Address: Instytut Fizyki Teoretycznej UW, Hoza 69, 00-681 Warszawa, Poland.
11 will refer to Ref. [3] and [4] as 1, I1 and to the formulas of [3, 4] as (1. 1), (IL. 1) etc.
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I shall start from the equation which has been introduced in the previous papers (1.3),

ap($)

‘ i o Hyp($) : ®»
and its formal solution
w($) = U(@)w(0), N )
where
¢
U(¢) = exp [—i(N—e,)$p]P exp (—i g Ad¢’) 3

and " was defined by (1.3), (I1.27). Similarly as in the case of the time evolution, one can
introduce in this “¢-picture” a ¢-dependent density operator

o(@) = Ul (@)e(0)U(4). @
Decomposing g(¢) into a sum of Pauli matrices
e=73+po,
one obtains

o(¢) = 3+p - a(9),

where
® ¢
a(¢d) = Pexp (i | #'dp")o(0)P exp (—i | H'dd").
1] (1]
One the other hand, using the equation

0
ia—j, = [Hy o),

one obtains the equation for ¢(p) = (0:(d), o2(¢), 63(P)):
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with the initial condition ¢(0) = ¢ (¢ are the usual Pauli matrices).



Eq. (5) has a formal solution
®
N A : ,
6(¢p) = Pexp| —i || — Z3+4 o cos &, | dd' | 6(0). 6)
®
0

Now, as before [3, 4], T can again calculate the expression containing the ¢-ordered
exponential operator, dividing the interval [0, ¢] into / subintervals. Denoting ¢,, = md/!
1 have

p
. Pexp (—i | Hdd") = exp (—idpt) ... exp (—iddpA’ ), (N
0
where

A = xZ3+4y cos ¢,2,.

The product (7) can again be interpreted as a composition of *‘small” rotations and
the result is obtained in the same manner as before for the case of spin 1/2-representation

— 1 o
'me =2 x0'3+2y61 €Os (t'nu

only now the interval [0, 27] is replaced by [0, ¢]. The resulting rotation is specified by the
vector a(¢)

o(¢) = exp (—ix - Z)o(0). (®)
The expression for exp (—ia - X) has been given by (11.42):
exp(—ia-l)=@;+(1—-i®—:)cosial~i125in|ul, 9
loe* |l L]

where (o @ a);; = o0 .

Formulas (8) and (9) give a very simple algorithm for the calculation of o,(¢) and
hence also for g(¢). For the case of circular polarization of dressed field with the use of
this expression I can obtain an exact analytical formula for a(¢).

3. Application of the algorithm to the theory of resonance fluorescence
3.1. Brief review of the theory of resonance fluorescence

The problem of resonance fluorescence has been analysed both experimentally and
theoretically. The pioneering experiment has been done by Wood (1913). A lot of spectro-
scopic information (g-factor, fine or hyperfine structures, radiative lifetimes ...) is obtained
by resonance fluorescence experiments [5].

At first the resonance fluorescence has been studied in the limit of a weak electro-
magnetic field (the intensity of the incident beam is very low) [6]. The development of
lasers gave a new impulse in the study of this problem. Special properties of laser radiation
(monochromatic property, high intensity etc.) ensure new experimental conditions for the
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study of resonance fluorescence in different regions of frequencies of the incident eleciro-
magnetic wave and in the limit of strong field.

It is well-known [6] that-for a-weak incident field the fluorescence spectrum is of the
type of the S-function. The first theoretical paper considering the limit of strong field
was that of Mollow [8]. He obtained the three-peaked distribution of “the fluorescence
spectrum. The observation of the Mollow spectrum was first made by Schuda et al. [9].
Recently these results were confirmed by Walther [10]. References to recent theoretical
papers can be found there. Generally in the vicinity of an exact resonance the predicted
spectrum consists of a strong central component at the wavelength of the incoming laser
radiation and two weaker side components which have 1/3 of the intensity of the central
line. The separation of the side components is determined by the Rabi nutation frequency.

- Cohen-Tanoudji [7] et al. calculated this spectrum treating the fluorescence as a spon-
taneous emission of dressed atoms. They obtained the same specirum as before. It has been
shown also that Fermi’s golden rule approach to this problem is not adequate, because
from this rule we obtain that the height of the central components is two times greater
than that of the two side components. It is only from an exact analysis of the master equa-
tion [7] that one obtains the two sidebands to be three times smaller than the height of
the central components (effect of cascades).

Experimental observations indicate the presence of an effect which is not in good
agreement with the simple theory: the spectrum is not symmetrical as predicted by the
theory. This was explained by different arguments e.g. by including the interaction with
other levels [11] or by introducing a non-Markovian behavior in two-level atom fluorescence
[12]. - v

All of the papers mentioned above used the rotating wave approximation (RWA),
so that the Bloch-Siegert shift was neglected.

I shall use a new very simple algorithm for calculating the transition probabilities
between the levels of dressed atom. We shall see that even using only Fermi’s golden
rule, and neglecting the effect of interaction with other levels but without RWA, one obtains
an asymmetrical fluorescence spectrum for the two-level atom with the one sideband having
height three times smaller than the height of the central component in a certain domain
of laser frequency and laser intensity. Thus we cannot neglect Bloch-Siegert shifts in the
calculation, especially in the radiospectroscopic case.

3.2. New algorithm for numerical calculations of transition probabilities

For the sake of simplicity I consider again only a two-level atom dressed by the electro-
magnetic field polarized linearly, perpendicular to the static field. Then the transition
amplitude for the spontaneous emission from a state y; to a state v in the first order of
perturbation theory is proportional to the matrix element (see Fig. 1) {y¢la,]y;», or in
the phase representation

- d
<oty = f 2 @ (10)
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It is worth noting that Sambe [13] used similar Hilbert space  with a similar scalar
product as in the phase representation, but in the semiclassical treatment. From the form
of the wave function (2) given in the previous section one obtains

d¢

2n
<f/f'flf71|"/’i> = f o W?(O)Gl(d’ﬁ/)i(o) exXp [i(31‘5f+’1f‘ni)¢]a (11)
0 ;

where o,(¢) was calculated in Section 2.
Vi — & ,n>
Y e ———oe | g, 0>
Fig. 1

For the calculation of (I1) we must find .(0) and v;(0), which satisfy the following
equation

af]
<exp (i2ne) exp (E o a) - 1) p,(0) = 0.
| It follows further that
lex]

o op(0) = —lajy(0) if g=—,
' 4n

1

—let]

o op(0) = [alp(0) if &= ——. (12)
4z
Hence we have the folldwing solutions of (12)
1 —ny+in
v, (0) = t:( R mz) for &= (13a)
Vamy+ D\ nat1 47
1 1 —
7(0) = ___< R ) for =2, (13b)
V2(ny+ 1) \ny +iny 4n
where
@ = (“b &y “3))
o .

n, = — .
ol

Finally, I obtain the following algorithm for the calculation of the matrix element (11)
— Divide the interval [0, 2n] into / subintervals.
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— Calculate o,(¢,) = [exp (- in(§y) - 2)]io; by the algorithm described in Section 2,

2nk
where ¢, = —7;—— Then

A = {yloylyy =

e
i Z o1(dy) exp [i(ne—n; + e~ )]

(14)

k=1

Taking the square of 4 we obtain. the transition probability for the spontaneous

emission from y; to ;.

We consider now the energy diagram calculated before [3, 4]. From Fig. 2 we have
the following three transitions corresponding to the three-peaked spectrum of resonance

fluorescence
€4
{n+ 2w | [s,ne1>
8&*7
R leyne2>
fn+t)w [e.n>
je,nel>
n fo,ne1>
L)
{n-Nw o |-,n>
i
-

Fig. 2

(a) the transitions corresponding to the central component, ED and CF. Then n; —n;

—1 and &-—¢ = 0. It is easy to see that the rates for these transitions are identical

so we must calculate the transition probability only for one of them:

1° for the transition CF, g = &

2° for the transition ED, & = g

—%, therefore from (13b) one has
'

wi(0)o9:(0) = ny,
w}“(O)azwi(O) = Ha,

$i(0)a39:(0) = ns. 15)
= l‘ﬂ, therefore from (13a) one has
¥ (0)0;9(0) = —ny,
P(0)o,9:(0) = —nj,
$i(0)o39(0) = —ns. (16)
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On the other hand, from previous section we have

o1(¢) = [exp (—ia - D)]io;,
so that we can write
o (@) = fu(@)o1 +12(P)o,+[3(P)os. amn
Substituting (15)-(17) into (14) one obtains
yelogdwider = —<wedoylyien
Thus the matrix elements for the transitions CF, ED give the same transition proba-

bility.
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(b) the transition CD corresponding to the lateral component with the frequency

el
0 2
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(c) the transition EF corresponding to the lateral component with the frequency
20)_50:

The numerical results are givén in Fig. 3 for different values of y.

We see immediately from these calculations that the lateral components are not
symmetrical and near the resonance (wy/w = x & 1) we have the height of onelateral com-.
ponent three times smaller than the height of the central component for certain value of
y (y = 0.5).

When we are going through the crossing points of the energy levels we must choose
suitable branches of the wave functions involved in the formula for the transition proba-
bility. This remark becomes more important when we consider the atom dressed by an
electromagnetic field with an arbitrary polarization because.then the mechanism of the
crossing is more complicated.

4. Conclusions

I have presented a new application of the phase representation: an algorithm based
on this representation has been used in the study of the resonance fluorescence. Our formal-
ism is useful, because of the two advantages of the phase representation in comparison
with the standard approach. Firstly, the order of differential equations ihvolved is lower

(it is easy to see this if ‘we take e.g. the operator ata, which in analogy with the mechanical
. 2

. —d . - : ) 1 0 .
oscillator has the form ) +x2 in conventional representation, but n+— % in, the
Y e S :

phase representation). Secondly, because the phase ¢ varies only in the interval [0, 2x],
the boundary conditions for the problem considered are simpler than in other representa-
tions. This enables us to calculate numerically the matrix elements in a very simple way,
which was illustrated in previous publicati'ons [3, 4] and here, so we hope that our apprdach
may be very useful in the general time-dependent problem.

~The author would like to thank Professor I. Bialynicki-Birula for suggesting this
problem and helpful comments on the draft of this paper.
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