Vol. A57 (1980) ACTA PHYSICA POLONICA No 4
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Two-magnon bound states are examined for the simple cubic Heisenberg ferromagnet
with next nearest neighbour exchange interactions using the Green tunction formalism.
Analytic expressions for the two-magnon propagators are obtained for total pair wavevector
at the Brillouin Zone corner. The Lattice Green’s Functions that enter into these expressions
in this case are shown to be related to those of the nearest neighbour FCC case which are
much more easily calculated. The range of values of % (where 7 is the ratio of the next nearest
to nearest neighbour interaction) for which bound states exist are calculated and compared
with other results. A universal curve for the bound state energy as a function of 7 and valid
for any spin is given.

1. Introduction

Most of the earlier work on two-magnon interactions and bound states has concen-
trated on the Heisenberg model with nearest neighbour (nn) interactions only. The results
showed that bound states are usually formed for large total pair wavevectors [1-3] while
for lower values of total pair wavevector some of the bound states enter the two-magnon
continuum and become resonances [4]. The inclusion of single-ion or Ising anisotropy,
or biquadratic exchange usually favors the formation of bound states [5-10]. Majumdar
[11] obtained the bound states for a linear chain with next nearest neighbour (nnn) interac-
tions and Loly et al. [12] examined the effect of nnn interactions on the resonances in the
two-magnon Raman spectra in the FCC lattice.

Recently Krompiewski [13] using a Schrodinger scattering approach obtained the
two-magnon bound states in the simple cubic (SC) lattice with nnn interactions. In this
communication we present an alternate method based on the propagator or Green’s
function formalism. The advantage of this approach is that, in addition to bound states,
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the spectral functions within the two-magnon band can be directly obtained. In this paper
we derive analytic expressions for the two-magnon propagators for total pair wavevector
at the Brillouin Zone (BZ) corner. We also show that the Lattice Green’s Functions (LGF)
that enter into these expressions are given in terms of those for the nn FCC case. The
advantage of this is that following Inoue [14], the latter LGF’s are expressed in terms
of elliptic integrals and easily evaluated both inside and outside the band using the arithme-
tic-geometric mean method [15]. The bound state conditions are obtained in a simple
form and the range of values of # (where # is the ratio of the nnn to nn exchange interac-
tion) calculated and compared to the results of a simple Ising analysis [10, 16] and those
of Krompiewski [13]. A universal curve for the bound state energy as a function of 5
valid for any spin is presented. '

The plan of the rest of the paper is as follows: in Section 2 the two-magnon propagator
is defined and an exact equation for it obtained at absolute zero temperature. In Section
3 this equation is solved analytically for total pair wavevector at the BZ corner and then,
in Section 4, these are used to obtain the bound state conditions and bound state energies.
The conclusions are given in Section 5.

2. The two-magnon propagator
We consider the Heisenberg Hamiltonian
H= —Z]ijSi'Sj, (1)
ij
where i and j stand for the position vectors R; and R; respectively and Jj; is the exchange

interaction between the spins at sites i and j. The propagator for the scattering of two
magnons with initial wavevectors k7, k, and final wavevectors ky, k, is

Glk ks, kks, 1) = —i0(1) <Ol [Si,(9Sk (1), 8¢ (0)Si; (0] 10>
= {Se(OScDISEOSe(0)), @

where S is the Fourier transform of S} and |0} is the fully aligned ground state at T=0K
defined such that S7 [0) = —S5|0) and S; |0> = 0. The equation of motion for the Green’s
function in (2) has the standard form

G(kyk,, kK5, 0) = <0| [Si.Sk,» SivSi 110>
+ [ Sk DS ®), H] 1S5 A0)S{(0) D0 ©)

where G(..., ®) and ..., represent Fourier transforms. Introducing the total and relative
wavevectors

K = k1+k2, 2k = kl—‘kz

K =Kk, +k), 2k =k|—k) @
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and evaluating the commutators in (3), it is straightforward to show that

{w—28[2J(0)~J(: K+k)—J(: K—K)]}G(KK, K'K', )

1
= 48%0x. g (5k+k* +0—1— 1—\—I§>

-3 ) H@=IG K= k= D]G(Kk+g, KW, 0) ©
L q B

where J(g) is the Fourier transform of J;; and N is the number of spins. Taking K’ = K
(conservation of total momentum) and introducing the partial Fourier transform

1 o
G(ij; K, 0) = — E e Righ " RiG(Kk, KK, w), 6

kK’

equation (5) reduces to

d; .
G(ij, K, w) = 8S* ( - -?:’Si) A(i, K, 0)+2 Z JAGL K, )G, K, ), (T

1

where
1 cosk-R;cosk-R;
A “s Ks it - . — ) 8
wEo -5 ) .
k
. 1 k-R(cos K -R,~cosk-R,
Ay Koy =Sy REBEEI B k) ©
_ N ‘w—QK, k)
k
and
QK, k) = 28[2J(0)—J(; K+k)—J(3 K—K)] (19)

is the totalenergy of two non-interacting spin waves with wavevectors k, and k,. We note
that for nn interactions only, the Green’s function equation in (7) is the same as that given
by Wortis [1]. v

From equation (6), the diagonal part G(i, K, w) of the Green’s function represents
the propagator for processes involving the creation of two spin deviations separated by
a distance R;. Below we consider a SC lattice and examine processes where two spin de-
viations are created on the same site (R, = (0, 0, 0)), 1st neighbour sites R; =(1,0,0)a)
and 2nd neighbour sites (R, = (1, 1, 0)a) where a is the lattice constant. In shorthand
notation these sites are indicated by i = 0, 1 and 2 respectively.
* Equation (7) represents a set of coupled equations involving various Green’s functions
which, in general, is quite complex. For the SC nnn problem with K in the (111)-direction,
these equations can be written in matrix forms which have to be inverted numerically.
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Another drawback for the nnn problem is the great effort required to obtain the functions
A and A that appear in (7). These functions can be expressed in terms of the so-called
Lattice Green’s Functions (LGF). The LGF for site i is defined as

1 eik - R;
L{w) = — —,
@=3 z w—Q(K, k) (1)
—

At present these LGF’s can only be obtained by evaluating the sums in (11) numerically.
However, at the zone corner (K = (1, 1, 1)n/a) a considerable simplification results which
enables us to obtain- analytic expressions for G(00, K, w), G(11, K, w) and G(22, K, w).
Furthermore, the LGF’s in this case can be written in terms of those for the nn FCC case
which Inoue [14] has shown to be expressible in terms of elliptic integrals of the first and
second kinds. These integrals are easily evaluated both inside and outside the band using
the arithmetic-geometric mean method [15]. These solutions are discussed in the next
section.

3. Solution at the zone corner

When the total pair wavevector is at the zone corner (K = (1, 1, 1)n/a) equation (7)
can be solved explicitly. After some algebra we find

S 1 L10(Looo+L110)
G(00, K, @) = — (1= —}{ Logo— 12
(00, K, w) 3J1< 25)( 000 — ¥ SD, 12)
S (Looo+L2go)
G(11, K, w) = — —= | 13
(LK m) = g (3
S [P(Looo+L320)+Q(Las1—Li10)+TLjoo]
G(22, K, w) = — 0007 220/ L0 T , 14
(@2 K @) = 7 D,DsD, (14
where
Dy =1+ 1_—.;18 (8Ly10—2L00+ Lazo+Looo +4L211), (15)
(Looo*+ L200)
D, =14 ~—""— 77, 16
2= F 128 (16)
D; =1+ X (L000+L220+214200), an
128
Dy =1+ 1——;15 (Looo+2L110+L3z0—2L313—2L300)s (18)

P = 1[A(4+2B-C)—4B%], 19)
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Q0 = —2B(A+C), (20)
T = —C(4+2B—C)—4B’, (21)
11 -
A =14 ——(Looo+2L; 0+ Lyse), (22)
128
B = E,_S(L11°+L21’)’ (23)
= 2 (L200—L110)- ' (24)
6S

In the above n = J,/J, where J; and J, are the nearest and next nearest neighbour ex-
change constants respectively and L,,, is the normalized LGF for R; = (I, m, n) a given by

Lyl(@) = o mclxdy(zco-s L% t_"_’gy Lnz)s (25)

where @ = (0/24S7J,)—2n and

3 :
= (Q/248J,)—2n = 1~ ?’1 (sin x sin y+sin y sin z+sin z sin x). (26)

The only LGF’s involved are Logo, Li10> L200s L211 and Ly,o. However not all of these
are independent and the following identities connecting the LGF’s can be derived

((I)*' DLooo—21Ly10 = 1, 2n
LA n
(=1Lt 8(2L200—L220‘fLooo+4L110“4L211) = 0. (28)

We use these identities to eliminate L,,, and L,,;. The remaining LGF’s are expressed
in terms of those of the nn FCC case defined as

[FSS) = dxdyd_z cos Ix cosmycosnz . 29)
t—(cos x cos y+€0s ¥ COS Z+COS Z COS X)

It is.straightforward to show that

Li@) = —3< 0 2"&::3(10—@) 30)

Following Inoue [14], LTCC are then expressed in terms of elliptic integrals of the 1st and
2nd kinds which can be easily evaluated by the arithmetic-geometric mean method [15]

or other methods. Finally, we note that (25) can be written as

. 1
Lo, 1) = ;llen(ua 1), 31
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where
1
u=1-— ;‘1(1 —). 32)

Thus we need only obtain Ly, for one value of nvizy = 1 and use (31) and (32) to find
L,,, for any other value of #.
[

4. Bound states at the zone corner

The two-magnon bound states for single-site, 1st and 2nd- neighbour excitations are
-glven by the poles of G(ii, K, w) for i == 0,1 and 2 respectively. Thus the bound state
conditions .are Dy = 0 for G(00, K, w), D, = 0 for G(11, K, w) and D; = 0, D3 =0
and D, = 0 for G(22, K, w). It is straightforward to show that the bound state conditions
thus obtained are the same as the determinental equations given by Krompiewski [13]
for K at the Brillouin Zone corner. To be specific ‘'Krompiewski’s det(#,) = 0 and
det(F,) = 0 (his equations (29a) and (29b)) reduce to D;D,D; =0 and D,D;D, = 0
respectively. The advantage of our results is that it gives us the bound state conditions
for the three excitation processes mentioned above separately and hence enables us to
determine which of these can’form a bound state. Our numerical calculations show that
G(00, K, ) and G(22, K, w) do not have poles outside the band and only G(11, K, w)
can have a bound state. This is consistent with the conclusions of the Ising-type analysis
[10, 16] although, as we shall sce later, the predicted range of n values for which a bound
state exists is -different. From (13), the bound state condition is given by D, =.0 and
using (31) and (32) this can be written as

Looo(u, 1)+ Ljge(u, 1) = —1287. (33)

The reason for writing the bound state condition this way is that the left hand side when
plotted as a function of u is a universal curve and can be used to find the bound state
energies for any value of # and S. ,
We look for bound states outside the two-magnon band, which from (26), extends
from o = 1—2y to o = 1+29/3. Thus for # > 0 the bottom of the band is at 1—2y
and for n < 0 it is at 1 +27/3. In terms of u, the band extends from —1 to 5/3 and the
bottom of the band correspondsto —1 fory > © and 5/3fory < Oie.u < —1 corresponds
to energies below the band for n > 0 and u > 5/3 corresponds to energies below the band
for # < 0. The left hand side of (33) is shown in Fig. 1 outside the two-magnon band.
We note that at u = —1 it is finite and has its minimum value, while at » = 5/3 it has
a logarithmic divergence. For a given 5 and S, the bound state is given by the intersection
of this curve with the horizontal line corresponding to (—12S%). This determines the value
of u for the bound state and the bound state energy is then given by (32). We note from
Fig. 1 that for n < 0 the bound state occurs at'u > 5/3 and forn > Oit occurs at u < —1
L.e. the energy of the bound state is always below the two-magnon ‘band.
It can be seen from Fig 1 that a bound state exists for all negative values of # but
for'n > 0 it only exists below a critical value #, given by the minimum value of the curve
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which occurs at u = —'1. At this valué of u, using the expressions for the LGF’s given
by Inoue [14], the left hand side of (33) reduces to a simple expression involving K(k )
and E(k.) where K and E are elliptic integrals of the 1st and 2nd kinds respectively and

= %(1 ¥ —\{2—3) The resultant value of s, is then

T . 0.0464469 A
nc=;%[kiK(k+)E(k_)+kiK(k_)E(k+).—E(k+)E<k,_;)]=- — (4

N
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Fig. 1. The two-magnon bound state condition for G(11, K, w). The solid curve represents the universal

function given by the left hand side of equation (33) and the horizontal broken line represents the right

hand side (for = 1/48 and S = 1). The intersection of these two gives the bound state energy. The shaded

region indicates the two-magnon continuum. Note the difference in scales for positive and negative values
in the vertical axis

This agrees well with the value of 0.05 given by Krompiewski [13] for S = 1. The value
of n, given in (34) is also close to the result of a simple Ising analysis [10, 16] which gives
1, = 1/248 = 0.04167/S. However, the Ising. analysis predicts a lower bound for
n(= —1/8S) for which a bound state exists while the present rigorous results show that
bound states are possible for all negative #. ‘

The bound state energy for any value of # and S can be found from the universal
curve in Fig. 1.7As can be séen from this figure, the divergence as u approaches 5/3
makes the graphical solution more difficult for larger negative #. However, in this region
an asymptotic expansion for the elliptic integrals and hence for Lygo and Lo, enables



572

us to obtain an analytic expression for the bound state energy. For u# = 5/3 +38, where &
is small and positive it is straightforward to show that

: 6 32 '
Looo(u, 1)+ L 300(u, 1) = a3 [ln (3‘5) - 1] . (35)

Equating this to — 1287 gives 6 and hence u as a function of #. Thus using (32) we find
that the bound state energy is given by

R 2 ;
G =1+ ?" [1+16e= (=250, (36)

The range of 5 for which (36) is a good approximation is measured by the accuracy of the
expansion in (35) which is better than 1% for n = —1/38, better than 0.1 9 forn = —1/28
and gets better for larger negative .

Clo= : , : ;
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Fig. 2. Two-magnon bound state energy as a function of . 4 = Bo— s where @, is the energy of the
bottom of the two-magnon band and @ps is the bound state energy. This is a universal curve valid for any
spin . Note the difference in scales for positive and negative values in the horizontal axis

The variation of the bound state energy with # for any value of the spin S is shown
by the universal curve in figure 2 where 4 is defined as the binding energy @, — wgs Where
@, is the energy of the bottom of the band and @y is the bound state energy.

Finally, we have derived the sum rules satisfied by the spectral functions within the
two-magnon band for the various spin pair excitations given by the imaginary part of
G(i, K, w) for i = 0, 1, 2. By evaluating the moments of the spectral functions and compar-
ing them with the prediction of the sum rules we can (i) determine whether a bound state
exists outside the band , and (i) if a bound state does exist, determine its energy. ‘We
found excellent agreement with all the results presented above.
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5. Conclusions

.

In this paper we have derived explicit analytic expressions for the two-magnon prop-
agators in the nnn SC Heisenberg ferromagnet with total pair wavevector at the zone
corner. Only bound states corresponding to 1st neighbour spin excitations were found
consistent with a simple Ising analysis [10, 16]. The bound state conditions were obtained
and compared with the Ising results [10, 16] and with those of Krompiewski [13]. Finally,
the bound state energy as a function of # and spin S is given.

The Green’s function approach used in this paper enables us to find the spectral
function within the two-magnon band in addition to bound states outside it. For the SC

- problem with nnn interactions, so far it has only been possible to obtain compact analytic
solutions for K at the zone corner. In a recent study [17] of two-magnon resonances within
the band, equation (7) was expressed in matrix form for K along the (111)-direction and
its solutions obtained by numerical methods.

I am very grateful to Dr. P. D. Loly for encouragement and many helpful discussions
on the two-magnon problem. This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.
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