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INDIRECT COUPLING BETWEEN LOCALIZED MAGNETIC
MOMENTS BY NARROW BAND ELECTRONS
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Starting with the Modified Zener Hamiltonian as a model for a ferromagnetic metal,
an effective exchange interaction between localized spins is derived. In contrast to the existing
approaches exchange integrals depend via enhanced susceptibility on the actual polarization
of itinerant electrons. Equations for magnetization, Curie temperature and susceptibility
of the system are presented and compared with other similar approaches.

1. Introduction

The interaction between localized moments and itinerant electrons has attracted much
attention for many years. In the simplest approach, itinerant electrons, assumed free,
interact with the localized spins by means of the so called s-d exchange interaction. For
some applications it is convenient to derive from the s-d model an effective coupling be-
tween localized spins, known as the RKKY interaction. The detailed description and
applications of the RKKY interaction to the rare earth metals are given in Ref. [1].

However, in alloys or intermetalic compounds containing transition metals itinerant
electrons are no longer purely s-like. It is generally accepted that at least a part of the
d electrons from the transition metal atoms become also itinerant and provide an inde-
pendent mechanism of interaction between localized rare earth moments. Bloch and
Lemaire [2] and Bloch et al. [3] considered a model consisting of spins localized on sites
occupied by rare carth metal atoms and a narrow band formed by d states from transition
metal atoms. They used it to study paramagnetic susceptibility and ordering temperature
of RE-Co alloys. Essentially the same model combined with the coherent potential approxi-
mation was shown to qualitatively account for mean. magnetic moment per atom in some
RE-transition metals alloys [4]. Arai and Parrinello [5] and Bartel [6] expressed the opin-
ion (see also Ref. [8]) that the localized electron theory could become a useful (at least
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phenomenological) tool for studying ferromagnetism in transition metals and alloys pro-
vided that a small admixture of itinerant d electrons is present in order to introduce an
adequate exchange coupling through intra-atomic effects. Some investigations were per-
formed along this line using the so-called modified Zener model (MZM). In this model
itinerant electrons are described by the Hubbard Hamiltonian, and they are coupled to
the localized spins on each site by the usual exchange interaction. Bartel [6] applied the
Green function method to calculate the dynamic susceptibility of such a system. In the
following he used it to evaluate the spin-wave spectrum and Curie temperature.

The aim of the present paper is to find the indirect exchange interaction between
localized spins. In contrast to the RKK.Y interaction or to the approach presented in Ref.
[7] we do not restrict ourselves to the free electron approximation or to the paramagnetic
ground state of itinerant electrons. However, for the sake of simplicity we consider only
one narrow band and assume ferromagnetic ordering for the magnetic moments. The
effective spin Hamiltonian is calculated by considering the average value of the term
describing the interaction between itinerant electrons and localized spins by means of the
Green function method. In addition, in Section 3 magnetization of both subsystems,
Curie temperature and susceptibility above T, are discussed.

2. Derivation of the effective spin Hamiltonian

In the Bloch representation the Hamiltonian of the MZM is

H == Hl +H29 (1)
where
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a; () is the creation (annihilation) operator of an electron in Bloch state (ks), s = +or—,
8,8, ,S% stand for the operators of a spin localized at site , U is the Coulomb interaction
energy between electrons with opposite spins at the same site, J denotes the energy of ex-
change interaction between localized and itinerant electrons.

We want to calculate in some approximation the average value of H,. This can be
done by means of spectral theorems applied to the appropriate Green functions. For
example, in order to calculate the average value of the first term in Eq. (3) we have to use
the following Green function

Thg = €57 aus; al,q-% = —i6(1) <{Sy (Nax+(D), afsg-(O})-



543

The Fourier transformed equation for I'y, is
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and finally the last term in Eq. (4) is neglected because its contribution is of higher order
when |J} < U.

, The single particle Green function is calculated in the Hartree-Fock approximation
and its Fourier transform becomes

yss aly = e Gi(), (5)
where
Gks(w) == (w""(:ks)_1 (6)
and
& = &x+3 Un—7 sd. )
4 = Um+2J{S% (8)
is the Stoner splitting and
R=n,+n_, +—Nn_, {9)

Z <aksaks> (10)

In the following G () is used to find the thermal averages referring to itinerant electrons.
Taking into account the above approximations and Egs (5) and (6), equation (4) can be
rewritten as follows

nkq(w) =L Gk+(w)Gk+q—(w) [Z <Sn ak +g—g - >
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Applying the spectral theorem we get

E : x-+(q9) iqr _
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where
Xss'(q) Zf(8k+qs) f(sks) (11)
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are the components of the static susceptibility of independent itinerant electrons. In a simi-
lar way we can express the average values of the other parts of H, in terms of the averages
of products of localized spins operators. Including the lowest term, linear in spin opera-
tors, we get

CHay = —Jm 3 (8D

= Z[J (SIFSTY+IGLST ST +2TKSiSH], 12)

J? R N ()
Jh=Unr = — ig(ri—r;) N 13
s Nze 1-Uy_ (@) (3

q

where

_and

2
Jizj = ..J_. Z eiq(r,;—rj) A+ +(‘1)+X- —(Q)+2UX+ +(Q)X— —_(Q) . (14)
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We can interpret the right hand side of Eq. (12) as the average value of an effective spin
Hamiltonian

Hg= —JmY Si— Y (J5S{S; +J;S7S] +2J;,5i57). (15)
i ij

Note that Eq. (15) contains terms with i = j which are neglected in RKXY theory. These
terms correspond to an indirect interaction of the spin at the i-th site with itself via the
band electrons. Thus we have arrived at the following simplified physical picture. The:
narrow band electrons interact with localized spins which are treated as a kind of an exter-
nal quantum field. The Hamiltonian of the band electrons has a form of the Hamiltonian
of MZM, Eqgs (1) to (3). Properties of the localized spin system are determined by the
effective spin Hamiltonian (15) with the exchange integrals J;; dependent on the actual
polarization of the band electrons which on the other hand depends on the magnetization
of localized spins. So the determination of any physical quantity needs selfconsistent
calculations. If the polarization of band electrons is neglected, our Hy is equivalent to an
effective Hamiltonian (abandoning contribution from s electrons) derived in Ref. [7],
if in addition U — 0, then Eq. (15) reduces to the RKKY interaction.
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3. Magnetization and susceptibility

As an illustrative example of our approach we will find and discuss the equations for
the magnetization of the system. Once the effective spin Hamiltonian is derived it can
be found in a straightforward way applying the Hartree~Fock and molecular field approxi-
mations to H, and Hg, which then become

He = Z sksa;.csaks,
ks
Hs = - h Z Sf,

‘where &, is given by Eq. (7) and
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where A (€) is the density of states function per spin direction. The magnetic moment
per atom

M = gug(<S*)+3 m), (18)
has to- be calculated from a set of selfconsistent equations
Sh
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with the help of Eqs (16) and (17). Here By(x) is the Brillouin function, » stands for the
number of itinerant electrons per atom and Eq. (21) determines the chemical potential
of electrons. The conditions for the Curie temperature in our model are

<SZ>T=TC =0, Mrag,= 0. _ (22)
Expanding the right hand sides of Eqs (19) and (20) to the first order in {(S*) and m and
substituting into Eq. (22) aliows one to write the following equation for T¢
S(S+1)

ke Tc

[U+% J? ]5(TC)— 1=0, (23)
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where

&T) = hm 6_,(T) = — J H(e )af(s) 24

and A"(¢) means A" (&) above T. The Curie temperature following from Eq. (23) is about
two times higher than that predicted by Bartel [6] because he has neglected the contribution
to the molecular field acting on every localized spin due to the presence of the all other
spins. This, however, does not change very much the qualitative features of T, as a function
of J, U, and n. In the same approximation, the static susceptibility of the system above
the Curie temperature is

g 3= L5(T)+ S(S+1) [1+J6(T)] 25)
UB 3kg T—T. 1) °
€5(1)
where
T) = (1)
1— UsT)’

Qualitatively similar results for T and y(T) were obtained by Bloch et al. in Refs [2] and
[3] from their theory of RE-Co alloys. However, the equation for susceptibility presented
in Ref [2] introduces several phenomenological parameters having no direct microscopic
interpretation and the equation for the Curie temperature in Ref. [3] bears the same fault
as the corresponding equation in Bartel’s paper [6] does. It is seen from Eqs (19) and (25)
that the magnetization as well as the susceptibility above the Curie temperature are not
far from the corresponding results for completely localized spins only. The detailed behav-
iour of magnetization and susceptibility with temperature depends on the electrons density
of states function and has to be found numerically.

4. Conclusions

We have examined a modified Zener model with the aim to separate partially, itinerant
electron subsystem from localized spin subsystem in a selfconsistent way. As a result we
have got Hamiltonians H, and Hy describing electron and spin subsystems respectively.
H, is simply MZM. Hamiltonian while Hg has a form of an anisotropic indirect exchange
interaction which is a generalization of RKKY interaction for: (i) the ground state of the
itinerant electrons not having to be paramagnetic, (i) the correlations between itinerant
electrons being taken into account, (iii) selfpolarization of the localized spins being taken
into account, and (jv) exchange integrals depending on the actual magnetization of the
system. '

The advantages, in our opinion, of this two-stage approach to the MZM are as follows:
(/) Once we have derived the effective spin Hamiltonian it provides in the Hartree-Fock
and molecular field approximations relatively simple equations for magnetizations of both
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subsystems. In particular in our approximation the molecular field acting on localized
spins comes both from the itinerant and localized electrons in contrast to the approximation
used in Refs [3] and [6], where only the first contribution appears. It accounts, for example,
for a Curie temperature different by a factor of two. (i) It allows for the easier development
of an alloy theory for the model due to the fact that the itinerancy and localization are

separated, but in a selfconsistent manner.

REFERENCES

[1] T. Kasuya, Magnetism, Ed. G. T. Rado, H. Suhl, Academic Press, New York 1966, Vol. 1IB.
[2] D. Bloch, R. Lemaire, Phys. Rev. B2, 2648 (1970).

[31 D. Bloch, D. M. Edwards, M. Shimizu, J. Voiron, J. Phys. F 5, 1217 (1975).

[4] B. Szpunar, B. Kozarzewski, Phys. Status Solidi (b) 82, 205 (1977).

[5] T. Arai, M. Parrinello, Phys. Rev. Lett. 27, 1226 (1971).

[6] L. C. Bartel, Phys. Rev. BT, 3153 (1973).

{7} A. Troper, X. A, da Silva, A, P. Guimaraes, A. A. Gomes, J. Phys. F 5, 160 (1975).

[8] M. B. Stearns, Phys. Rev. B8, 4383 (1973).



