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Two-sublattice collinear Heisenberg metamagnets with uniaxial two-ion- anisotropy
are investigated by the renormalized high density expansion method. Formulas for both
magnetization and the free energy are obtained, including Gaussian fluctuations of the self-
-consistenit field as well as the scattering of spin waves on these fluctuations. When applied
to the typical metamagnet FeCl, the theory yields the phase boundaries in better agreement
with the experimental ones than other existing theories. Moreover, the isotherms of magneti-
zation are obtained numerically for FeCl,.

1. Introduction

1t is well-known that a sufficiently strong external magnetic field destroys the anti-
ferromagnetic ordering of a uniaxial, two-sublattice spin system. Provided the field is
applied parallel to the preferred axis, there are two types of destruction of the antiferro-
magnetic structure (labelled A) [1-5]. One consists in the so called spin-flopping equivalent
to the transition to the oblique phase (also termed the flop phase). The other is a direct
transition to the phase P via abrupt reversal of opposite spins. The phase P, in which the
physical difference between the sublattices vanishes, is commonly called “paramagnetic”,
but sometimes also “induced ferromagnetic” or even “ferromagnetic” [1, 3]. '

Antiferromagnets of the latter type i.e. exhibiting only the immediate transition from
the phase A to P, are referred to as metamagnets [1, 6, 15].

In the present paper this term is used in a somewhat more limited sense, namely only
to those antiferromagnets of which the magnetization (below certain temperature T)
rises discontinuously with the field. The corresponding transitions line H, Wp(T") determines
the boundary separating the regions A and P (equilibrium line). This boundary runs on
up to the Neel point Ty, but above T, it corresponds to continuous transitions. Con-
sequently, the temperature T, has the significance of a point, where the order of the transi-
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tion [11-14] changes [11-25]. The possibility of the occurrence of such a point has been
discussed for the first time by Landau [26] in 1937. The new interpretation proposed by
Griffiths [27, 28] in 1970 elucidated the properties of 7;: it exhibits the tricriticality when
the so called “staggered field” is taken into account as a third thermodynamical parameter
(besides T and H). Thus, in the vicinity of T, we are dealing with a critical region of a new
kind (tricritical), a very interesting topic of study for the general theory of phase transitions.
Let us mention other papers analysing tricritical phenomena in metamagnets: Hankey
et al. [29, 30], Riedel [31, 32], Chang et al. [33, 34], Harbus et al. [35-37] and (using the
Monte-Carlo method) Landau and Arora [38, 39] — all within the scaling hypothesis,
Reatte [40] and Stauffer [41] within the droplet model and some other authors [42-45]
applying the renormalization-group approach.

A satisfactory thermodynamical description of metamagnets has to comprise the phase
diagram in the (7, H)-plane. In our case, the diagram consists of the single coexistence
line Hxp(T) accompanied along its first-order segment by two further lines: H,(T) and
Hy(T) which determine the range of metastable states i.e. the existence limits of the phases
A and P respectively. The phase diagram has to cover the whole temperature interval up
to Ty and the wide range of the external magnetic field up to the threshold field H, = H,;(0)
which can attain some hundreds of kilo-oersteds. That is the reason why all complete
theoretical phase diagrams for metamagnets obtained up to now, have been calculated
only in the molecular field approximation [18, 21-23, 46-50]. Unfortunately, each theory
in this approximation gives results that are at most qualitatively correct [51, 21, 25].
Some better approximations are valid only within a narrow range of temperature; therefore,
they have been used near T (high temperature expansion [36, 37], the Bethe-Peicrls-Weiss
method [19, 20] and the constant-coupling method [6, 15]) or near 7 = 0 (semiclassical
method [52, 53]) only.

Thus, we see that the theory is still rather underdeveloped except for the immediate
neighbourhood of the points: T=0, T =T, and T = Ty.

The intention of the present paper is to develop the theory of Heisenberg metamagnets.
in such a way that the obtained phase diagram may be sufficiently accurate in the whole
range of temperature. For this purpose we will use the high density expansion method,
the most precise tool in the theory of magnetically ordered crystals. The renormalized
version [64] of this method (see Section 3) yields good results in the whole range of tempera-
ture. Our numerical calculations, carried out to compare results with the experimental
data, are based on the parameters corresponding to the best measured metamagnet, ferrous
chloride FeCl,, having a relatively simple magnetic structure [1, 21, 54—57]. Our work
is restricted to the case of constant pressure, since variations of the latter do not affect.
the essential features of metamagnets [58-61].

2. The model adopted

As the well suited model of the FeCl,-type of metamagnets we adopt that one in
which the moments are strictly localized and coupled by the Heisenberg exchange interac-
tions. To account for the crucial role of anisotropy in the metamagnetic phenomena [6, 52,-



527

1], we provide the corresponding Hamiltonian with an Ising term (uniaxial two-ion anisot-

ropy).
Consequently, the Hamiltonian for phase A, written in the two-sublattice notation,

reads

# =% Y LINU-1ISiS— Y Y1955y

FEL oy i g#g ay
+ Y Y IN(f-9)SES,—uHQ, S5+ Y, Sy —pH (Y, S5~ Y 8%, 1)

I#g ay F 7 ; -
where
ay = —+ or +— or zz 1))
o 31 foray = — 4, + —
172 7 14Dy for ay = zz

31 for oy = —+, +—
7 ~qzhe S 3
I = I3 {12+D2 for ay = zz ' 3

The vectors f denote the positions of lattice sites in the first sublattice whereas g denote
the same in the other. The symbol I; stands for the intra-sublattice exchange coupling
parameter and is assumed to have the ferromagnetic sign, whereas the I, corresponds to
the inter-sublattice coupling with the antiferromagnetic sign. The D; and D, are the
coefficients of the two-ion anisotropy terms for the same sublattice and for different sub-
lattices respectively. The symbol p denotes the magnetic moment of one ion. Generally
we also assume that the considered metamagnet sample is a bulk single-crystal being a smgle
magnetic domain and great enough to neglect all surface effects.

To discuss the tricritical properties of the model adopted here, we have introduced
the fictive® “staggered field” Hy,, stabilizing the collinear antiferromagnetic ordering. It
is defined as the derivative H,, = —dG/0L of the thermodynamical potential G, where
L =} (M;—M,) is the order parameter for the phase A (see [35]).

To construct a theory of sufficient generality and valid in a wide range of temperatures
the thermodynamical perturbation method is used, as mentioned above. We have chosen.
that their modification, which (owing to the renormalization of the first three terms [64])
include? Gaussian fluctuations of the self-consistent field as well as the scattering of magnons
of these fluctuations. The results obtained will be of better accuracy (in the whole range of
temperature) than those of RPA TI.

The precondition of all perturbation procedures is the proper decomposition of the
Hamiltonian into “unperturbed” and “perturbed” summands:

H = Jf°+(.}f—.;f°) = #°+#* 4y

! In some cases it is possible to ascribe a certain physical meaning to the “staggered field”, see e.8.

Blume [62, 63].
2 In the present paper the upper index 0 always denotes the zero approximation, here identical with

the ‘molecular field approximation (MFA).



528

provided that 2#° permits strict calculations and adequately describes the fundamental
properties of the system. In the present paper we employ the decomposition introduced
by Vaks et al. {65) and adapt it here to the two-sublattice systems.

#° = 1 NBS5 +(Sip?)—NC{(S3) (S5

Z S7— Z ®

= —3 Y 2IN(f-f)é5565%

F#L ay

-3 Y Y I7(9—9)5S05y
g#g9 ay

+ Y Y IP(f—9)d538S,, (6)
F#g ay

where the following symbols have been used.
683’ &= S;'_<S_zf>6z,a’
8S) = S} — {8370,
with

5. = 1 foa=2z
e 10 if a # z,

and further

vy = B(uH + pHy+ B(SE) — C{Sp)), Q)
2 = B(uH —pH+B<S3) — C(SE)),
p=(ksT)™!, NC= Y I3 NB= } If, ®
F#g S#Sf

with N — the total number of ions in one sublattice. The (85> and {S;) are two parameters
yet to be determined from the minimization of the free energy.

3. The renormalized high density expansion

To obtain corrections of higher order we apply that variant of the thermodynamic
perturbation approach which is known in the literature as the high density expansion
method [66-71]. When used in the theory of strongly coupled magnetics, this method
is based on the classification of Feynman diagrams with respect to powers of the param-
eter z-! where z is the effective number of spins within the range of interactions of a given
spin. )

It is well-known that high density expansions become reasomable only when the
deviations from the molecular field are not too large. For example, near the eritical point’
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the fluctuations are large and consequently the expansion parameter z—* cannot be treated
more as a small quantity. To show this, let us calculate Ty. For this purpose we write
the high density expansions for the sublattice magnetizations by having recourse to the
diagrammatical notation introduced by Izyumov et al. [69-71]:

sy i b dsb

9

<=1 BN - [ « (..

The value Ty we find from the condition: <Sf) = —{S;» = 0 when H = 0. Provided
that (S7) <1 we can rewrite Eq. (9) in the form

. 1 1
{§p,= [A(T)+ ;B(T)] S+ = [C(TYIn S5+ .. ]+ ..y (11)

" 110y

where A4, B and C are some functions of temperature. It can be demonstrated that certain
expressions in the z-2 term diverge logarithmically if {(S7) — 0 [65]. Thus, the Néel temper-
ature can be found only to an accuracy of the first approximation. Therefore, the high
density expansion contains some terms which are divergent in the vicinity of the critical
point although the expansion series ought to be convergent for physical reasons.

From the above we see that it is useless to take into account the further terms in the
high density expansion when the temperature is near the critical points. There are, however,
other ways to obtain more precise results, namely either by modifying the decomposition
of the Hamiltonian (1) [72] or by appropriate renormalization of the first terms in Egs. (9)
and (10). The first way obviously improves only the results obtained by the zero order
approximation [72]. The second one seems to be more efficient. Following the method
of Ref. [64] we carry out the renormalization of diagrams to the first order of the expansions
(9) and (10) in such a way that

3>« G+ (?_@D*CQD (12)
{sg”> = M + . @. ) (13)

[ & m  cm
o e e e By

”: E + Qé__g_.q- !g T ¢ @4-“.{75)

or
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represents the renormalized transversal and longitudinal interaction lines, respectively.
The blackened parts of the diagrams denote the infinite partial sums of the following dia-

grams:

C:-‘m*(_@j*(—_@-@)’... {16}
CHE-[7- r—ﬂj . BYfy....

17

Egs. (12) and (13) have the following analytical form

S =Bk gy ) {m=D-Bri @1 £ 0sen)
k

, =m0 (el(k)-ez(k))] (s —n_)Bazsz[Ir;(knz}
20, ®)—0-(9) 0. 0-0®

1 — .
S =Bt o Z m=01-Butiz 01 1)

L (@a=n.) (si(k)—'ez(k_))] _ (n+—n_>515;[1:;(k)]2}
Aw . (k)—w_(k) o (k)—w_(k) ’
where
ny, = (exp J"1,2"1)’—1,
ny = [exp (Bo.(k)—1]7%,
0.(k) = % {e:(K)+e,(k)+ v/ [e1(R)—8,(R) P +4<S%y <S5 [17; ()12,

&1,2(k) = BTy, — <S5 (),

@

1 _ ,
b= 75 f exp (=% E)b"(y1,2+4y1,20)dL,
1N [ BB JAEIBIE ) + BBy s (15T

(4y1,2)* = N k [1—BB;I% (k)] [1—BbyIZ(k)]— 2B b5 175 (k)T

and

3

pil — d [SBs(SY1,2)]
R I e R
‘ dyi,.

where B, is the Brillouin. function.

(18)

(19)

| (20)

@1
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24
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We can also write in the above approximation the formula for the free energy of
a metamagnetic:

w0

Fy= %NB((S}>2+(S;>2)—NC<S}) {Sg)— 5 \/2 f exp (—% &%) [In ¢4(&)

+In ¢,(§)]dS +7 Zk In |[1— BB ITi(k)] [1- BBLITi(K)]

N
RGNS 5 [(4y)*b: +(dy2)*P;]
+ %z {ln |1—exp (- fw.)|—1n [1—exp (~yy)| |

+In |1 —exp (—fw_)|~In [1—exp (—y)I}, @7
where ’

§h [(S+D (;+ ‘fAYiz]
sh [3 (yi+£&4y)]

Egs. (12) and (13) involve those contributions to the sublattice magnetizations which
result from the temperature-renormalized free spin waves, from the Gaussian fluctuations
Ay;,, of the molecular field as well as from spin waves scattered on these fluctuations.
Moreover, the above formulas have been derived without any assumptions as to the
magnitude of Gaussian fluctuations. On these grounds one can presume tht Egs. (18)
and (19) describe more strictly the behaviour of the system in the critical region than
Egs. (9) and (10).

If the fluctuations are small, we can write

¢i(§) =

by, = by +3 by 4y, 2+ (0) (28)

In this case, Egs. (18) and (19) go over into the formulas of RPA I i.e. into Eqgs. (9) and (10).
Taking H = 0, H; = 0,y, = —y, — 0and using Eq. (18) we find the implicit equation

for the Néel temperature Ty
kT _ <a<s;>) Pr
B + Cc ay 1 y1=0

4. The two-phase approach

To study the metamagnetic transitions we have to use the two-phase approach. In
the case of metamagnets such an approach is even more consistent with the empirical facts
than in the case of common antiferromagnets with an intermediate flop phase for which it
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is often used [3, 73]. Then, we calculate separately both boundaries H,(T) and Hy(T}
which determine the range of existence of the antiferromagnetic and paramagnetic phases
respectively. Moreover, from the equality of the free energies we find for T < T, the co~
existence line Hp(T) (being the boundary of stability for both phases i.e. the thermodynam-
‘ical equilibrium line). The phase P is defined as the one in which the difference between
the sublattices vanishes. The free energy in the phase P calculated in the same approxima-
tion as for phase A can be expressed as (H,, = 0)

o0

f exp (=% &) In $(&)d¢

-

Fp = N(B—C) (§°)*— —21\’:
ﬁ\/27:

+ Z In [1— BB (y) [I5(k)— L5 (R)]1 + % B () (4y)?

k

2
+ I Z {In |1 —exp (— po(k))| —1n |1 —exp (— )i}, (30)
k
where the magnetization {(S§*) is described by the formula:
_ 1 .
Y= B0+ § » Wn=[1=FO) (i (=15 ()} a1
with ’
n=(expy—1)7" m = [exp(Bok)—1]"", (32)
w(k) = B~y —<8% (I () =115 (K)), (33)
_ 1 I
B"(y) = —= | exp (=3 EHB™ Ny +Ldy)de (34
J2n
and -
y = pluH+(B~C) <] (35)
and the squared average of the molecular field fluctuations is
1 BT (k) —I75(K))
AV)? = — = — 36
Wy =5 Z TN AT &%

5. Some analytical results

The essential properties of metamagnets may be represented by the phase diagram
in the plane of the parameters (T, H). To determine the main elements of this diagram
we take, at first, the staggered field to be equal to zero. To obtain the coexistence line
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H,(T) for T < T, we require the free energies Eqgs. (27) and (30) to be equal. In particular,
for T = 0 the following relations are valid:

by = —by,=b(y) =S, ~

by = b, =b'(y) = 0. (37
Thus we obtain the following expression for the threshold field:
1 - - - -
By 4T @O P C-T PGP, 69
k
with
1
H? = H3(T = 0) = —CS,
u
Ak = [(B+C—TI} ()~ U, (k)T (39

On the basis of Eq. (38) we state that the zero fluctuation cause the threshold field (i.e. the
coordinate of the phase coexistence point for T = 0) to increase in comparison with the
MFA. The boundaries of existence H, and Hp are determined from the conditions of
susceptibility divergence for T< T, and H, = 0

. a ¥4 4
lim — (S f>+(Sy)) = 00 (40)
H-HA() 0H
provided that H < H,(T) and
) (8%
lim L = 41
N H-Hp(y OH e

provided H > Hy(T). Note that the quite analogous conditions using staggered suscepti-
bility ’

0
lim S5y —(8)) = 42
i 5, (TP = “

provided H < H,(T), may be used alternatively to calculate the A-P boundary for T > T
where H,p = Hy = Hp.

-Ziman [74] has proved that the susceptibility becomes divergent when the energy
“of the lowest excitation (spin wave) vanishes. The same holds in the case of the renormal-
ized energies of spin waves, depending on temperature [3, 73]. Thus in practice the condi-
tions Eqgs. (40-42) can be replaced by:

@_(ko, Hy(T)) = 0, “3)
w(ko, Hy(T)) = 0, (44)
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Calculating k, and kg from Egs. (45) and inserting them into Egs. (43), (44) we obtain
the boundaries of existence of the phases A and P:

1
HA(T) = o {(C—d) (S +LSP)

+V(C+d ) (LS5 +{(Sp) >+ 4S5y <SZ> (C—dy)} (46)
and ’
SZ
Hy(T) = <”>(2C—d1—d2), @)
where
Nd1 =2 Z D1(f—f'), (48)
FES
Ndy =2 3, Do(f-g) (49)

For T = 0, equations (46) and (47) become:

sgp il . B
Hy(T = 0) = — {\/(C+d1)2—(C—d2)2

= (B-O)(Bady [l Z (AK) ™ Y(B+C—Ii7 (k) ~ 1)]} : (50)

Jcray-c-ay LN
Hu(T = 0) = —i—(zc—dl—dz). (51)

The zero-temperature equations given above are identical to those derived earlier by
Turov and Irkhin [4], by minimizing the antiferromagnetic energy for T = 0.

The boundaries of existence of the phases A and P define the maximum range of the
hysteresis loop AH. The observed breadth of the hysteresis loop, however, depends strongly
on the rate of magnetic field variation, on the perfection of the sample and on some other
factors [21]. When measuring the breadth of the hysteresis loop we are never sure if this
is the maximum breadth because the measurements are performed in non-equilibrium
states [75]. The obtained boundaries of existence of the phases A and P allow us to deter-
mine T, and, moreover, to find a criterion of occurrence for the metamagnetism in the free
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spin wave approximation i.e. for T'= 0. Using the notion of the threshold field H, this
criterion can be formulated as follows: an antiferromagnetic is a metamagnetic when

Hy(T = 0) < H,. (52)
Note that the analogous relation for the phase A
HA(T =0) > H, (53)

is equivalent to the inequality (52). On inserting into Eq. (52) the explicit expressions for
H, and H, we obtain

1 _ _ . -
C<ditdat oo ) AW B+C-I)+[I W) (59)
%
If we neglect the intrasublattice coefficient d; as well as the term resulting from the zero
vibrations, we get
C<d, 55

which is indentical to the well known criterion of Néel [1, 52]. As can be seen, the general-
ized criterion (54) permits the occurrence of metamagnetism for slightly lower anisotropy
than that predicted by Néel [52].

The maximum breadth of a hysteresis loop is obviously given by

AH(T) = H,(T)—Hy(T). (56)

Taking into consideration that at the tricritical point (7}, H,) the order of the transition
changes, we obtain the following condition (for T’ < T))

lim 4H(T) = 0, (57

T"T',

which can be used to determine the coordinates (7}, H,) after substituting (46) and 4.
Another way to find H, and 7, is to require the magnetization jump on the phase coexistence
line to vanish

Iim AM =0 (58)

T-T,
provided T < T,, where
AM = (5% —% (KSEY+{(S2).

We now have to determine the further part of the coexistence line H,p(T) above the
tricritical point. In practice one cannot use the equilibrium condition

FA(T, Hap(T)) = Fe(T, Hyp(T)) (59)

because in this case the two free energies approach each other tangentially, so that the precise
determination of their common point is impossible. Taking this into account we have



536

to find the required line from the condition that the difference between sublattices vanishes
at the boundary of the P state.
lim (SF>—<{Sg») =0 (60)

H->Hap

provided that 7' > T, and H < Hp(D).

6. Magnetization and phase diagram

To calculate other characteristics, namely the free energy and isotherms of magnetiza-
tion, we have to apply numerical methods. For this purpose we specify the values of the
spin and exchange parameter, choosing C/B = 6.7 for S = 1/2 which corresponds [21]
to the data for FeCl, in the molecular field approximation. The choice of the anisotropy
constants d;/C = 1.1 and d,/C = 0.1 fulfills criterion (54) and agrees roughly with the
breadth of the hysteresis loop obtained by means of formula (56) from the results of Jacobs
and Lawrence [21].

Anhydrous ferrous chloride FeCl,, the best examined metamagnet, crystallizes in the
rhombohedral system (lattice of the CdCl, type). Below Ty = 23.5K the spins point

10 j
fe Cl t=0
m 2
=1
-7
o75-  ©=67 4 ;
d4"1'1 . _A
) dz ; 9.1 t =O.h
0-5“' /- b
Ve
| R by
025 4 7
|
i
- ; ! — }
0 05 w0 7 0 05 t by 10°¢

Fig. 1 Fig. 2
Fig. 1. Isotherms of magnetization m(%) plotted for ¢ = 0, 0.4, 0.6. For the phase A, m= S+ SHys
gor the phase P, m = 2¢{5%). Here h = HJH? and t = T|T§, the upper index 0 denoting the zero approxi-
mation
Fig. 2. The phase diagram of FeCl, in the plane (4, k), obtained from the renormalized high-density
expansion method
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alternately parallel and antiparallel to the trigonal axis, constituting ferromagnetic planes
perpendicular to this axis. The first stage of the numerical calculations was to calculate the
magnetizations {S7)°, (S;>° and (S*}°, and the free energies F} and Fy in the zero approxi-
mation as functions of the magnetic ficld and temperature. Next, we tried to solve the set
- of two complicated equations (18) and (19) describing the magnetization of the sublattices.
They are, indeed, formally solvable without approximation, but in practice this requires
an excessively long time on a digital computer. Beyond the vicinity of the critical points
the deviations from the molecular field are small; therefore, one restricts the iterative
procedure to the first step. At first we calculated for various temperatures the free energies
from Egs. (27) and (30) as functions of the magnetic field.
Two important values were found without any simplifications: the Néeel point Ty
from Eq. (29) and the threshold field H, from Eq. (38).

05 1.0
1.0 L W— 1.0 —_— =r=
i _~Vettier et al.
m Fe Cl | w k { experiment )
H Heap—"
S=4 | s 3 4
5 | .
075t £=67 i | Present work——\
d=41 |
Zero approx ! P
d,=04 - of present work —" 1
0507 4 05 |
P
- A g
m, ——=—ee e
025 2USH=CS+ (55
o Fe Ct,
et . =
0 05 't 10Nk 0 05 w0 1/7,
Fig. 3 Fig. 4

Fig. 3. The phase diagram of FeCl, constructed in variables ¢ and m (m taken along the line hap(®)).
Symbol AP denotes the coexistence area
Fig. 4. Comparison of 4 phase diagrams for FeCl;: 7 — Heap’s result BPW [20], 2 — the present result
Hfp/HS, 3 — the present result Hap/H,, 4 — the experimental diagram by Vettier et al. [61]. Each result
is reduced to its own Hy and Tn. The dots correspond to the tricritical points

Magnetization processes for several temperatures are shown in Fig. 1. The coexistence
line of the phases A and P was determined from the conditions (59) and (60). Next, the
existence boundary Hp(T) was obtained from Eq. (47). Also, the tricritical point was found
from Eq. (57).
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The coexistence line is shown in Fig, 2, as well as the reduced boundaries of existence:
H(T)/H for the phase P and H,(T)/H¢ for the phase A. In Fig. 3 the same phase diagram
is plotted in other variables, namely magnetization and temperature. In Fig. 4, using a unified
scale, we compare the experimental phase boundary for FeCl, with those obtained from
different theories. The following results are shown: I and 2 — lines obtained from the zero
and first approximation of this work, 3 — Heap’s line [20] calculated by the Bethe-Peierls-
-Weiss (BPW) method, 4 — the line of Vettier et al. [61] obtained experimentally. The
tricritical points are indicated in all 4 cases.

7. Conclusions

In order to describe the metamagnets more precisely than previous researchers using
only effective field theories, we searched for a method which would be sufficiently exact
in a wide regime of 7'and H. We have chosen the high density expansion and we improved
its poor accuracy in the critical regions in the present work by renormalizing the graphs
for the sublattice magnetization. The modified method, even in the first order step, has
proved to yield a theory of metamagnetism more precise than the mean field approximation
and even than the random phase approximation.

The (T, H) phase diagram obtained by this method shows, already in the zero approxi-
mation, a better agreement with the experimental - boundaries than e.g. Heap’s result [20].
Excellent evidence of the quality of our theory is provided by Fig. 4, where several stability
boundaries are compared. Even more illustrative is the following confrontation of the
reduced coordinates of the tricritical point:

: g I't/ T N Ht/ Hs
1. Heap [20] BPW method 0.92 0.25
2. The present work — zero approx. © 095 0.39
3. The present work ‘ 0.91 0.62
4. Vettier et al. [61] experiment - 0.89 0.72
5. Jacobs and Lawrence [21] experiment 0.87 0.74

Unfortunately, we are unable to compare the magnetization isotherms in Fig. 1 with
’experimental curves since all those available ones are uncorrected for demagnetization.

The criterion (54) determining the appearance of metamagnetism is slightly generalized
with regard to the Neel condition [1,-52] as it contains both uniaxial two-ion anisotropy
constants: d, (intrasublattice) and d, (intersublattice) each being multiplied by the corre-
sponding numbers of nearest neighbours. Contrary to Neéel’s result, the intersublattice
anisotropy d, is not necessary for the appearance of metamagnetism if only d, # 0. The
third term in Eq. (54) resulting from the zero excitations contributes rather little to the
quantitative role of the inequality derived.

The method presented in this paper seems to be efficient also in other problems of
metamagnetism, such as pressure effects, the role of the single-ion anisotropy, and tricritical
behaviour. Another example of its application is the FeBr,-type of metamagnets showing
unusual phase diagrams. For this case calculations by the present authors using the same
method are now in an advanced stage.
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