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It is shown that for ferromagnetic transition metals with cubic symmetry the change:
of one-electron state occupation numbers, caused by the influence of the spin-orbit interaction.
and lattice deformation on initially doubly degenerate electronic bands which intersect
the Fermi level, may be considered as the mechanism of linear magnetostriction. Expressions.
for magnetostriction constants for the [100] and [111] directions are calculated. The crude.
estimation for Ni shows that the proposed mechanism gives the correct result for the [111]
direction, but not for the [100] direction. In the last case, other details of the electronic band
structure must be taken into account.

It is well known, that linear magnetostriction in ferromagnets is related to a dependence
of the magnetocrystalline anisotropy energy on lattice deformation. Therefore, similarly
as in the case of magnetocrystalline anisotropy, the spin-orbit interaction is usually treated
as a physical reason for magnetostriction. For itinerant ferromagnets, like transition metals.
(e.g. nickel), the main contribution to the anisotropy energy comes from the energy bands,
which intersect the Fermi level and are doubly degenerate in the absence of spin-orbit
interaction [1-3]. With the spin-orbit coupling taken into account, these bands split and.
the change of one-electron state occupation numbers near the Fermi level, connected with
this splitting, leads to a lowering of the energy, dependent on the magnetization direction,,
and contributes to the anisotropy energy. It is quite possible, that the same mechanism is
responsible for the linear magnetostriction. However, in the previous investigations of the
linear magnetostriction within a framework of the band model, the energy degeneration [4, 5}
and the variation of occupation numbers near the Fermi level [4] were completely neglected.
Moreover, in the previous papers [4, 5] very simple band structures were assumed. There-
fore, it seems worth-while to check whether the described mechanism does lead to the
linear magnetostriction and try to estimate the role of this mechanism for constants of
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linear magnetostriction. That is the purpose of this paper; calculations are performed for
nickel.

We consider a simple model of the electronic band structure of nickel and calculate
the change of the mean energy of the system caused by the lattice deformation and spin-
-orbit interaction. For this purpose, we assume that in-the absence of both perturbations
the essential features of band structure of nickel, which are important for magnetocrystalline
anisotropy and magnetostriction effects, can be described by the two-band model proposed
by Mori [3]. In this model, the doubly degenerate bands are partially occupied by electrons
with spin 1, whereas the bands for electrons with spin | are empty.

Bloch functions which diagonalize the one-electron Hamiltonian H in the absence
of perturbations are denoted here by yj,,(r) and the corresponding one-electron energies
by Ejy,,» where A is the band index, ¥ — the wave vector and ¢ = 1 or | is the spin index.
In the tight-binding method, the spin-independent part of the wave function, y2(k), can
be expressed as a linear combination of atomic orbitals p;, namely

1 ,
ng(" ) = :/_-ﬁ Z e*n® Z cu(B)p r —'Rl?)’ ‘ ®

where R?, represents a vector in the crystal lattice before deformation and N is the number
of lattice sites.

Let us assume now, that the crystalline lattice is submitted to some deformation. This
deformation leads to a change of crystalline potential and to a variation of eigenfunctions,
too. So, the one-electron Hamiltonian in w3,(r) representation becomes non-diagonal.
When the lattice deformation is very small, energy and wave function corrections can be
calculated by means of the perturbation method. With only two degenerate bands inter-
secting the Fermi level taken into account, the following expressions for one-electron
energies and corresponding Bloch functions are- obtained:
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and e'repr_esen'ts here a deformation tensor. In formula (6) for AE,;,, only linear terms of
the‘eXpansion with respect to the lattice deformation are included. ' ‘

Next, we consider the spin-orbit coupling. In the presence of this interaction, the one-
-electron Hamiltonian should be completed by the following term:

h
a H, = m G(VV Xp)’ (8)
where o is the Pauli spin operator, V(r) is the crystalline potential and p is the momentum
operator. :
According to Ricodeau [6] the corrections to spin-orbit coupling and magneto-
crystalline anisotropy connected with the deviation of the crystalline potential V from
spherical symmetry for trahsition metals, especially for nickel, are negligibly small. There-
fore, it is justified to calculate the matrix elements of the Hamiltonian, representing the
spin-orbit interaction, with use of the expression ) &(r— Ry)SL(r—R;) (L is the angular
B

momentum operator at the site RS, S = }ho and ¢ is a function depending only on the
absolute magnitude of the radius vector) instead of the general formula (8). Moreover,
it was shown by Wang [7] that the only non-negligible matrix elements of H,, are those
calculated with the use of atomic d-orbitals, centered on the same atomic site. They can be
expressed in the form:

[(HLT = ¢ I[_% jH | ©®

where £ is a spin-orbit coupling parameter, M and N are 5 x 5 matrices describing the LS
interaction in atomic d-orbital representation, which are given, for example, by Abate and
Asdente [8]. In formula (9) the considered spin states are indicated by arrows.

Now, we can calculate the change in band structure for ferromagnetic nickel, cansed
both by the lattice deformation and the spin-orbit coupling. For this purpose, matrix
elements of the LS interaction are expressed in 5, — function representation, in which
the one-electron Hamiltonian is diagonalized in the presence of the lattice deformation.
Next, we use the perturbation method for the case of two nearly situated energy levels
(according to formula (2) the lattice deformation leads only to a very small modification
of the assumed band structure). Then, taking into account that the spin-orbit splitting is
small in comparison to the exchange splitiing and that the contribution of the lattice defor-
mation is small even in comparison to the LS interaction {terms proportional to the square
of the deformation tensor are neglected), we obtain

S
il
H
-

Ey = E2+%(AE11k+AE22k)_;lIEslozl , (10)

where

B =Y, cil)e, (k) (HO)- (11
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The change of the energy of the system of electrons in the one-electron approxima-
tion, AE, caused by the lattice deformation and the spin-orbit interaction can be expressed
in a form:

AE = ”ZkEnk@(EF E)— ZE «O(Ep— Eg)
>~ Z(Enk'—E DO(ER— k)+ zk‘,Enk[@(Eg Ep)— @(Eo E} ©]

+ ; Enk[@(EF . Enk) il @(Eg - Enk)]’ (12)

where @ is the step function, E, Ep denote the one-electron energy and the Fermi energy
prior to perturbations, respectively, and Ef is the Fermi energy with lattice deformation
and spin-orbit coupling taken into account. Er can be calculated according to the condition
that the number of occupied states does not change when perturbations are introduced:

2": [@(EF_Enk)_ @(Eg”'E;?k ] =0 13

Similarly as in the case of the magnetocrystalline anisotropy (see, e.g. {2]) the first term
in the expression for AE can be interpreted as the volume contribution and the two remaining
terms as the surface contribution (related to the change of the Fermi surface shape caused
by perturbations). If only two degenerate bands are taken into account and the change
of the Fermi energy is neglected, we can expect that analogically as in the case of the
magnetocrystalline anisotropy [2], the main contribution to magnetostriction is given
by the second term. Then, the change in the system energy AE is first of all a result of
variation of one-electron state occupation numbers. Considering only states very close to
the Fermi level we can express AE approximately in the form:

AE =~ B} Y [O(Ex—E)— O(Ex— En)]. (14)

The investigations of the band structure of ferromagnetic nickel show that the doubly
degenerate bands intersecting the Fermi level appear along the I'L, and I'X directions of
the Brillouin zone and these bands are not influenced by s—d hybridization. Analogically
as in Mori’s paper [3] we assume that these regions of the Brillouin zone give the main,
contribution to 4E. In Eq. (14), the expression Z [O(ES—E,)— @(EF—E )]s proportional

to this part of the volume of the Brillouin zone where the variation of occupation numbers
takes place. Due to the fact that in the presence of spin-orbit interaction and lattice deforma-~
tion, the directions [111], [111], [111] and [111] as well as [100], [010] and [001] are non-
-equivalent, we can approximately write:

4 3
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where i, j — indices characterize the non-equivalent I'L and I'X directions in the Brillouin
zone, respectively. v is the crystal volume and 4k, is calculated according to condition
(analogically to [9]):

E,(,)(kF) = E,(kp+4k,). 16y
We obtain
J0E oy .
Akn =|—— [niEso -7 (AEllkF+AE2_2kF)]? (17)
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then
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+ \ax LB (A 140+ AE 20 )]x, ¢ » (18)
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where a is the lattice constant. To calculate the matrix elements of spin-orbit coupling
and lattice deformation which appear in the above expression, we assume that the Bloch
functions for electrons in the degenerate energy bands, which cross the Fermi level inzthe .
I'L and I'X directions of the Brillouine zone, can be expressed in the tight-binding approxi-
mation by use-of linear combinations of atomic d-orbitals ¢, ... @5 in the following way:
along I'L axis ([111] direction of the crystal) .

¥y = (1= 922+ (ps—+/3 ¢5)[24/2,
vy = (P +9,—293)[2./3 "(\/§ Pat@s)24/2, 19)
and along I'X axis ([100] direction of the crystal)
Y1 =91 Y2 = @ (20)

In expression (18) for 4E one can find the usual contributions corresponding to
magnetoelastic energy. This energy (per unit volume) for crystals with cubic symmetry
can be written phenomenologically as follows:

. _ 3 2 2 2
AE 0 = —3 (€13 —c12) (eiey; +a3e,, +a3€33)A100
—3c44(0100€1 5+ 0x003€53 + 000384 3) A1 11, @1y

where 400, 4111 are magnetostriction constants in the [100] and [111] directions, respec-
tively; ¢;; are elastic constants, «; denote direction cosines of the magnetization vector with
respect to the crystallographic axes and e;; are components of the deformation tensor.
To calculate the magnetostriction constants we find in formula (18) all terms of the form
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such as-those in Eq. (21). Then, we obtain
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A = | —— A, — A)aky sin —r.
100 2n3a3(011""C12) aak k=k1= ( a 2)a FSln 2
7 n ak ’ H
+(z A+ 2)°037F‘ — (A2 + 2)], 22)
(2 i —1‘)2£2E0 0E0 1111 -3 ) N
Ay = */%TCMF o (Ag =245+ A3— A +245+2 /2 4g)
k=kg
‘akF . akp 1 = akF —
X —— sin —— — (% A+ A5+ A) — A5 +2A45 245 +J2 AL) sin® —— — A} :
WE '«/3 (z 41+45+4; 3 +244 s++/2 Ag) sin WE A3+\/2A6]a
(23)
where
‘ a a
Al" = - jd3r¢l (x— —2— s Y— ’2_ s Z) H(")‘Px(x, Y, Z) (24)

and the other A,, are defined analogically (sce, e.g. [10]). Here A.,, 4., include the integrals
of the 't'jpev f d*rVger—Ry)H(r),(r) and are given in the appendix.

One can see that the described mechanism really contributes to the linear magnetostric-
tion, but it is especially interesting how important this contribution is. Therefore, we try
to estimate the values of magnetostriction constants 1,4, and A,,, for Ni. The following

100

= 0.1271 Ry,

k=kg

oF
data are taken: Ep = —0.5342 Ry, akf® = 4.7171, aki* = 2.5553,ﬁ
a

aE 111

- Oak | j=ip
[11] calculations of band structure of nickel with the use of the von Barth-Hedin potential.
The expressions in square brackets in formulae for magnetostriction constants are estimated
approximately by taking into account only three d-orbitals ¢,, ¢,, ¢s;. Then, the values
of the integrals 4;, 4,, Ascan be taken from paper [12] and of integrals A’l, A;, A’; . A;
from paper [4]. We put also: ¢ = 6.7-10-3Ry [7], ¢ = 3.508 - 10-8 cm, ¢;; = 2.5
<102 érgfem?, ¢, = 1.6 + 1012 erg/em?, c,q = 1.185: 1012 erg/em? (these elastic constants
for Ni were measured at 300 K) [13].

Then, the calculated magnetostriction constants are equal:

= 0.0313 Ry. They were found by Laurent according to Wang and Callaway

Aioo = —7.13-107%, A, = —29.5-1076, (25
The obtained results show that there is quite good agreement between the calculated
magnetostriction constant and experimental data for the [111] direction (A7F; = —25 - 10-°)

and a rather significant discrepancy for the [100] direction A8y = —46 - 10-5). The
calculated value of 4,4, is much lower than the experimental one. A reason for such
a disagreement becomes clear when on e realizes that the obtained magnetostriction con-
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stants first of all depend on the reversal of the gradient of energy at the: Fermx level and
for the [100] direction this gradient is much higher than for the’ [111] direction.

Therefore, we can state that the change related to spin-orbit couplmg and lattice
deformation of one-electron state -occupation numbers in the doubly degenerate bands
which cross the Fermi level has an important influence on the magnetostriction constant
2414 of Ni, but for accurate calculation of 4,4, it is necessary to take into account other
details of the electronic band structure which have not been consxdered in the above calcu-
lations. ‘ :

We wish to express our sincere thanks to Dr. D. Laurent for providing values of
energy gradients at the Fermi level and Fermi momenta for mckel which he kindly sent
us through Dr. L. Adamowicz.
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APPENDIX
The A, and A, integrals are defined as follows:

P a a -a .
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amgforlle5orl- 500 5)+ (- 3
(g (- (-]
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