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The general multielectron theory of superexchange interaction formulated earlier is
applied to construct the effective spin-orbital Hamiltonian within the ground crystal states.
The symmetry considerations allow one to reduce a great number of dependent exchange
parameters to only a few independent ones without any simplifications of the theory. Kinetic
approximation reduces it to only two for arbitrary d%-—d" pair of ions.

1. Introduction

The multielectron theory of exchange interaction in cubic crystals between transition
metal ions in orbitally degenerate states resulting from different configurations has been
formulated in the previous communication (Part I).

It has been shown that using many-electron states of the whole crystal, constructed
from the one-electron orthogonalized molecular orbitals, up to the second order perturba-
tion theory, one may write the exchange Hamiltonian in the form

HY = Y (I3, )+ 1, PSS )VHDVED). 0]
AA

Generally, coefficients I3%(;, j) have very complicated form (see Eq. (28) (31) in Part I)
with a great number of parameters (see Eq. (12) in Part I). It has been also shown that
in the case of quenched orbital motion exchange parameter can be decomposed into the
sum of simple channels yv 2 y'v' — pairs of interacting half- filled orbitals (see (35) in
Part I). When the orbital degeneracy do exist the simple channels picture is not valid but
we can decompose the exchange parameter into a sum of so called collective channels
it = 952 — pairs of interacting subconfigurations (see (36) in Part I). Another kind of
collective channels appears if we take into account the configurational mixing, i.e.

yile (V;’f 23 ?33) — interactions between subconfiguration and configuration with configu-
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rational changing on one ion and (y;! <] yk2) 2 (53 °5 y&%) — interaction between con-
figurations with configurational changing on both ions (see (37) Part 1).

The theory presented in Part I is general and quite formal. It contains’hundreds param-
eters, so it is very difficult to apply it in this form to real systems with any detail consid-
erations. Thus, the next step is indispensable and our main aim is to construct the effective
spin-orbital Hamiltonian which will depend on a few parameters only. So, the question
is what kind of contributions from J(iy,vi¥2V2, j73VsYava) (see (12) in Part I) are significant
for each channel. This problem will be examined in Section 2. In Section 3 the effective
Hamiltonian in the case of ground orbital doublet and triplet will be constructed in sa
called kinetic approximation when we omit all contributions except of kinetic ones.

2. Symmetry requirements

Symmetry approach has one unquestionable advantage consisting in reduction of
a number of dependent parameters to only a few independent ones without any simpli=
fications of the theory.

As an example let us consider 180°-exchange between a pair of octahedrally coordinated
cations placed in a crystal of rock salt structure. To compute contributions from the kinetic
transfers, we need to determine matrix elements of one-¢lectron scalar operator between
the -states from neighbouring, ions A(iyv, jy'v) = <zyv|h| 77'v'>. Due to Wigner-Eckart
theorem, these eléments do not vanish if the states |fyv) and [jy'v') are the components
of the same basic vector of the same irreducible representation of the group D,y being
the symmetry group of the discussed pair. In cubic symmetry the various one-electron
states of i-th and j-th ions are as follows

10, = 1322~ 10,5 = 132> =)
D gy = 62—y W ey =162y
1> = 1) 1> = 1G>
b 15> = 10D 125(0): 1€ = 102
oy = 1 ;> = 1(x2)> @

when a four-fold axis joining these ions is used as an axis of quantization. Next, usmg
the standard group theory methods, we construct from the set (2) the bas1c states of irre-
ducible representations of the group Dy

af (i, j): 10>£10,),
b, i) ey tle,
bE,G. D 1L EILD,
ol |
e (- J): In:>+1n;>. : ’ 3)
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Consequently, states z,, and e, are not mixed by the transfer. Because of the dominating
character of s and p states of ligands in the exchange interaction, we will consider only the,
contributions which contain transfer via ligand placed between interacting pair. So, the
only nonzero matrix elements are these between states of a,,(i,j) and between states of
e,(i, j) (see [1]). They can be written as h(i0, j6) and h(iE, jE) = hlin, ji) (compare with [2]).

1 )
So, 54 = 625 kinetic contributions’ i h(i, )Yh(i, j) we reduced to 32 = 9, constructed from

these two parameters (nonzero matrix elements)

= H6, 100, ) =
LT g (s e B
5 (n, inyh(in, jn) = 7 (J&, iDL, j&) = T (¢, i©h(in, jn)
1
1h' imh(i0, 70 —llh‘ i&, iE)h(i0, jO —-lh i0, i0)h(in, j
I_] (]’17"7) (l > J )_E (.] 5 1§ _(l >J )_'ﬁ (.’ > b ) (”13.]’1)

= = h(jb, i0)h(it, j) = C = /4 B. @
We assume for simplicity, that U has approximately the same value for all transfers, because

U~10°cm™ > AU ~ 103 em™ Y, )

where AU is the difference between various U. Because of B ~ 0.1 A[3), wehave 4 > C > B.
C-parameter results from the configurational mixing and contributes to the last term of
the Hamiltonian (37) in Part I. So, the configurational mixing is significant 1f only Z oZa

and Z Ol 41 Fln 1 occurring in Eq (29) and (31) (in Part I) are of ‘the same order of

magmtude In CoO for example, if we consrder m,n = 0-and m, n=1we have o= 0. 97
and «; = 0.25 [4] and this condition is fulfiled.
Applymg symmetry arguments to correlation contributions we find

@5y (i, 1) Fo({10m> 10,33, {md e}, {Utmd 100}, {1 110, {1En> 16D,
o=1,2,..,16
a8, )2 Fy{lem> 6D}, {ltmd 0%, (1€ (€D, B = 1,2, 12
By 1) F({10n) lend)s (Mmd 1ED]: 7= 1,2, ..., 12
B0 1 Fo({0n> 160), {lnad 160D, 6= 1,2,..,12
FA{10m> 1120} {lemd 110} 16> 165D

D E310> 165), llew> 160}, (> D, €= P E 2 ©
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where m=:i;fand n < i, j and the notation {|)|)} denotes the antisymmetrizing product
of ‘otie=electron functioris. Applying the Wigner—Eckart theorem we can easily obtain all
nonzéro correlation contributions. Considering (6) one can find that there do exist £,, — ¢,
transférs but they result from the potential exchange and second order exchange correla-
tions; ofily. Second ‘order Coulomb correlations contribute to #,,v — ,,v transfers and
ey > eV transfers, so they are diagonal due to the subconfigurational interaction, and,
moreover, they are also diagonal within tzé 2 t collective channel.

3. Effective exchange Hamiltonian in the kinetic approximation

Let us start with the orbital operators problem. We want to express our unit operators
V;(l") in the basis of orbital ground functions [I'u). Using equivalence (18) from Part I we
find hoss

VA = %, [7VIwTulagy KCIVAT) 0 [Ty <Tw'. Q)

One can notice that due to the Wigner—Eckart theorem for cubic symmetry [1] the tensor
operators V4%(I'y and V"X(I') should be purely imaginary, so

KTWAI) My = KT Vi) (0> = i ®

We shall first consider the case when each ion has a double degenerate ground orbital state.
So, we find

VeI:l(E) =—=, VOE(E) = % Ues

«/

VA(E) = — 75 o, VHE) =14, ©)

where i

oy 0 —i -1 0 0 1
'9{1 (01)’ 'M2=(i E)), %0=(0 1): %a=(1 0)’ (10)

(i.e., <EO\%3|E0y = —1, etc.). These operators form Ham’s basis [5] within the four-
-dimensional space of linear operators acting in the orbital doublet. We note that apart
from the sign of %, the matrices (10) are simply the Pauli matrices.

We now turn to the orbital triplet state. Let us start from the type T';. Using formula
(7) we find .

Ay . Ty 1 / T2 R 1
-Vﬂl (Tl) = \/— dl’ Vx (Tl) = \/6 gx’ V& (Tl) = \/6 "@f
E, T 1 T2 1
I/G (Tl) s \/— gﬂfi I’; (Tl) . \_/—6_ gy’ Iln (Tl) = Vz Qqs
E T 1 T2 1
Ve (Ty) =— Vi (T) =—F=%., V,(T)=-73z2 (1)

73“*’” 7 78



507

where ) . .
100 10 0 ")/2— Y, '°
=010, &=[03 of, &=| o JI |
00 1 00 -1 2y
L 0o 0 o
o0 0 00 i 0 —i 0
g, =[00 -i|], 2= 000|, Z=[i oof,
0oi o ~i 00 0 00
0 0 o0 0 0 -1 0 -1 0\
2=0 o0 -1|, 2,=( 00 0|, Z=(-1 o0o0|. @12
0 -1 0 -1 0 0 0 - 00f  neool

These operators form Ham’s basis [5] within the nine-diménsional space of linear. opefatofs
acting in the orbital triplet T7;. It is easy to show that for 7), state we have the followmg
relation

Vi(T) = £V(T). ~(13)
The values of phase factors of the Clebsch~Gordan coefficients are defined according to [7].
It is interesting that matrices of $x,$ and &, are the same as matrices of orbital operator
£ =1 in the p-state of free atom. So, we can call .‘Z = 1 the fictitious orbxtal moment
operator. On the other hand we can express all other operators Vq(I“) via components of
VI(T,) = L. Thus, we have

.521 =% 32 - _@{'_—_ $ygz+:?,$y,_
én& 5= 7(3312—2)’ -@n = gzgx"”?xgz’
8. =1[3(L-2D), 9 =2.2+2,9. 14)

Now, we may pass to the effective Hamiltonian (1). In the first approximation we will
restrict ourselves to kinetic contributions only, and we neglect all the others (i.e. potential
contributions and second order correlation contributions). Let us ignore for a moment
the configurational mixing. In our Hamlltonlan we will have only two parameters 4 and
B (4) resulting from €' 2 €' and 732 2 152 collective channels. Moreover, the only one
simple channel ¢,0 & e 0 contrlbutes to the collective channel e . Because of our
restriction vy, v, vy, v, in (24) Part T are not-independent but v, = v, and vs = vy If we
consider the orbital doublet 4" - I'=E the effectlve Hamiltonian takes the form

HU = (I;llxezzx +I;411ez:1s SJ)M' d" .

HIAF+IAFS,S,) (A U+ U st
+ (o7 + 1558 Sisj)%o%o +IE+1 iESisj)%;%:s (15)
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where

eter 3 <S“S”S> <SIIS{IS>

Wn B A,((E}SIIW“‘(ee) nES>_) ol B(<ESIIW““(tt) []ES)) ’

IA;E

el 4 \/— A<S ISISY ~2CES||W 44 (ee) |IESY (ES|[W*¥(ee) |IES)

1 _ ) .
+:.2—:/—-;B(SIISHS> 2CES|W'4(11) |ES) <ES|W""(11) |ES),

o A((EsuW*E(ee) nES>) o p (<ESIWE) nE's'>)2
Too <SISISY AT Gsisisy )

JEE — 1 B(<ES{|W1E(“) ”ES>) '
i <S[IS1IS>

For orbital triplet d" — I' = T, the effective Hamiltonian is

(16)

. HY. = (Iﬁ;;j!ﬂ;‘g:'ss Vst +(TEE L INES,S ) (A28 + &t )+ Ty + IS S,)é”oé”

+(1EE IEES, s,)é%“ F LT IS8 ) &L L1+ (A7 2+ 15278,5 ) 239,

where

exex =%

P et 14 <<TS”WM1(“) ”TS>>2+% B (STS w4 (et HTS>)2’ -

(SIIS(IS> (SISIIS>
T Iﬁ,‘oE»'Q_l A(S IIS HSYZ(TS W 41(ee) TSy <TS|W ¥(ee) IS

F —-B<S ISIISY=2CTS||W (1) [ TS> <TS|W(tt) IITS),

lE 1E
I _G_A((TSHW (ee) HTS>) 9B<<TSIIW (1) HTS>) ,

(SsIstsy (SISISY

PE_1p ((,TSIIWlE(tt)' |1TS>)2
e — 3 (SISISY s

[P o _1 B(<TSHW”*<n). 1|TS>)2 |
D, (S|IS|Sy g

oo _ o g (CTSIW!T0 ITSY)
ek - (SIislis
The coefficients I are obtained by changing

KCSIW Hyy) ITS) <TS|W* () IIS)

Csisisy. T IS

b

an

(18)

19
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“and the dlagonal reduced matrix elements of the double cub1c 1rredu01b1e tensor operators
are tabulated in [6]. R ot sn o

“If ‘we now: take into account the configurational mixing new features appear. First,

we have to renormalize 22 .coefficients in consistence with (29) in-Part I.- So; we change

KIS|Wyy) ISy KTSIWH(yy) ITS)
= Y, o {mIS|W(yy) [ Sy {nl SW(y'y) In[' S, @
‘where " ‘. ' \
<mrSnW“”(w) jmrsy = <(t’“""."2+'")FS|1W‘“(w) (G "2+’")FS> (21)

! Secondly, new terms in exchange Hamxltoman will appear due to conﬁguratxon-conﬁgura—
 tion interaction (the last term of the Hamiltonian (37) in Part I). Note, that in our- approxi-
_matién-the second and the third term .of this Hamiltonian does not exist. Generally, all
-elements of the Hamiltonian (37) from Part I, except the first one, result from the intéraction
between terms and because of the coefficient (#,,ve,v'|Ag) they are nonzero only for the
orbital triplet. Thus, for the orbital singlet or doublet the configurational mixing does not
change the form of the Hamiltonian but only renormalizes its coefficients (see (20)). In our
approximation new terms_appear for the orbital triplet

LT+ IRTSS) L LI+ (I + 1TSS )2}

+ TR+ 1728,S )22+ (T2 + 152728,S ) 2.9, (22)
where
I = I5T = LA B Y 6ty 101 1 (SIS IS “2RM(m)RM(n),
197 =I5 = LA BY a0y 100+ 1<SIISIS) " 2RM(m)RM(n), (23)
and
RM(m) = {mTS||W'(et) |m+1TS). 4

4. Conclusions

More detail considerations of the theory of superexchange, developed in Part I, was
performed. Symmetry considerations allow us to reduce a great number of dependent
exchange parameters to only a few independent ones. It was shown that the second order
Coulomb correlations contribute to #,,v — ,,v and e,v — ¢,v’ transfers and that t,, - e,
interaction results from the potential exchange and second order exchange correlations.

The effective Hamiltonian for arbitrary 4" — d” pair was found in the kinetic approxima-
tion. In this case we were able to express all coefficients by the two parameters. Simulta-
neously, it was shown that in the case of ground orbital singlet or doublet the configurational
mixing does not change the form of the Hamiltonian but renormalizes its coefficients. If
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we consider the orbital triplet, the configurational mixing renormalizes the coefficients in
the Hamiltonian and also produces new significant terms.

The author is indebted to Professor L. Kowalewski and dr M. Kurzyiski for many
discussions on the subject and for reading the manuscript.
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