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The problem of superexchange interaction between orbitally degenerate ions is consider-
ed in the case of ground state resulting from different configurations. A new kind of exchange
contributions due to the configurational mixing is found. The general effective Hamiltonian
is given, using the tensor operator formalism. The concept of general channels is used to
describe the microscopic theory of its parameters. It is shown that in the case of orbitally
nondegenerate ground state for the strong crystal field, the Heisenberg form of the exchange
Hamiltonian can be expressed as a sum of simple channels (pairs of interacting half-filled
orbitals). In the other cases (orbital degeneracy or mixing of configurations) we can decompose
the exchange Hamiltonian into the sum of collective channels (pairs of interacting sub-
configurations or configurations). The second order correlations are taken into-account.

1. Introduction

The purpose of this work is to give the detail theory of isotropic superexchange
interaction in the transition metal compounds, in the case of orbital degeneracy and con-
figurational mixing. The theory takes into account all contributions to isotropic super-
exchange up to the second order perturbation theory, so the considerations include
correlation effects.

The superexchange problem was studied several times, however mainly very limited
cases have been considered till now. If authors considered this problem taking into account
orbital degeneracy, they restricted to the kinetic exchange mechanism [1-3] or to the mean-
-field coupling scheme [4, 5] and they neglected the configurational mixing. Most generally
the problem was treated by Eremin and Rokitin [6, 7] but these authors. started from
a different Hamiltonian in comparison with the one studied in the present work and they
did not take into account the interaction between configurations. :

The theory presented here deals with the isotropic spin superexchange. All amsotroplc
contributions which may appear here come from the orbital part of the effective Hamil-
tonian, Amsotroplc, antisymmetric, and blquadratlc exchange are generally smaller

* Address: Instytut Fizyki, Uniwersytet A, Mlcklewwza, Grunwaldzka 6, 60-780 Poznaﬁ "Poland.
(491)




492

effects than the isotropic exchange, so we omit them in this work. The general theory of
these interactions makes another nontrivial problem.

To describe the physical properties of transition metal compounds, the effective
Hamiltonian, expressed in terms of irreducible tensor operators, will be constructed. To
find them we apply the perturbation theory and make use of the isomorphism between
the Lee algebra of the angular momentum operators and the algebra of Fermi-Dirac
operators (Section 2 and 3). In the particular case it led us to the simple Heisenberg form
"'Hex = —2 Z;i 'IIjSISj'

i

In the transition metal compounds the Coulomb interaction between electrons from
the same ion is comparable with the crystal field energy. So, we can start either from the
mean-field coupling scheme, or from the strong-field one. However, having in mind the
microscopic character of the theory, the strong-field approximation seems to be more
natural due to the dominating role of covalency for the exchange parameter, mixing the
central ion d-orbitals with ligand p- and s-orbitals. Unfortunately, this approach is not
always correct from the physical point of view and we have to take into account also
a mixing of the crystal configurations (within the same d" configuration). It leads to a new
kind of electron transfers and to the renormalization of the effective Hamiltonian param-
eters and we will discuss it in Section 3.

To give a physical interpretation for the new parameters, a concept of general chan-
nels is introduced (Section 4). This concept is useful for better understanding of nature
of the superexchange interaction in the case of orbital degeneracy or the configurational
mixing.

2. Effective superexchange Hamiltonian

One of the most important problems in the microscopic theory of superexchange
is a proper choice of one-electron states. We start from the localized-electron model.

In the strong crystal field approximation, d-electron wave functions can be approxi-
mated by antibonding orbitals of the cluster and each d-electron localized state has the form

[yv> = N,(ldyv)> =2, pyv)> —Adsyv)), 0y

where |dyv) is a state of a central magnetic ion, |pyv), |syv) are linear combinations' of
atomic 2p and 2s states of ligands surrounding them, and A is a function of the covalency
parameter as well as the overlap integral [8]. After orthogonalisation of orbitals (1) from
different ions we get the basic set of one-electron states |iyvo) of magnetic insulator. The
index i labels magnetic ion sites, y and v denote irreducible representations of the point
group and their basic vectors, respectively, and ¢ is the spin component.

The Hamiltonian of the d-electrons in the second quantized form, with respect to this
basic set of states, is

H= Z} Ciyvi7lhlizy2v2daly 0 9iva0
{iyvio

+% (iz ) <i171v1i3)’3v3‘gli2yzv2i4?4v4>a3-171v16a?373v;10’ alquua' aiz'szzd = H(h)+H(g)7 (2)
o
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where H(h) and H(g) correspond to one- and two-particle terms, respectively. We restrict
ourselves to the terms with one-electron states |fpvn),n =1,2,3,4 localized on the
same or the nearest neighbouring magnetic ions. Interactions and transfers between more
distant neighbours will be neglected for their relative smallness The Hamiltonian (2)
contains one- and two-clectron operators (denoted by h and g, respectively) that are spin
independent. Spin dependent operators contribute to anisotropic, antisymmetric and
biquadratic interactions and we omit them in this work.

Now, using our basic one-electron states, we construct the many-electron states
|m) of the whole crystal. First, let us define a subspace €, of states which preserve the
number of electrons as well as thé ground term on each ion. The many-electron state
lmo) of this subspace has the form

N
Imo> = of ® liTuSM), ©)]

where o is the antisymmetrizing operator and [i'uSM) is a many-electron state of the
ground term of the i-th ion. The state |iluSM) is assumed to-be constructed from the
one-electron states |iyvo) as it is usually in the crystal-field theory The index m, denotes

a set of quantum numbers {I;p;S;Mi}i=1,2,..,n- Qo contains H r;+1(2S;+1) many-
i=1

~electron states |m,». Next, applying once or twice the pairs of creation and annihilation
operators, we obtain excited states of the form

Im;> = al,az,lmo), C))
or

where &, = (i,),Vx0,). We assume iy # i, in Eq. (4) and i; # i, or i3 # i, in Eq. (5) and
denote a subspace of these states by Q.
Let us introduce the operators P, and P; of projection on subspaces Q, and Q,

Py = ; [mg> {my,
P, = 3; Jmy> <my|, ©

and define the unperturbed Hamiltonian as
Ho = PoHP0+P1HP1. (7)

The perturbation ¥V 'is the difference H— H,, i.e. the part of H which couples states
from different subspaces. Using the perturbation theory for degenerate states [9], we
obtain the effective Hamiltonian for H in the ground subspace 2, up to the second order as

He“' = PoHP°+POVPo—PQVKVPo = PoHPo—PoHKHPo, (8).
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where the operator K has the form

K = ﬂ? Cmyl h
Unnimo %
Q4
and i
Unumo == Em1_Emo = <m1|H0Im1>'—<mOIHOIm0> (10)

are the energy differences between states from @, and Q, subspaces, respectively.

Contributions to the isotropic exchange interaction result from the terms that change
the spin direction of occupied one-clectron states [5]. So, we are looking for the isotropic
superexchange Hamiltonian in the form

Hex = g {wza-} J(iYIvl'YZv% j,YSv3’)’4v4)P0at.!lwvmaiyzvza"a}vg;’;c'ajy4V4aP05 (11)
with
. . Cravalhlivavs) Civyvilhljpavad
J(@y1v172V2, J73V3VaVe) = ALAEM e 2._2—. L
U(iy1v1s jP4va)
—1 (iyyv1 7733l 8l jyavaivav,) +second order correiation’ contributions, (12)
where

U(i?1vl$ j))4v4) = Ummtoa lm1> = a§y4V4ai11V1ImO>'
The second order correlation contributions result from a part of Eq. (2) of the form

'% g {‘ygr} <j’}’1V1i')’3V3I§|j’}'2V2 j’y4v4>a§71v1oa-l!‘v;;v;;o"ajy‘;vm"ajy;vza+h9c' terms. . (13)
If we neglect effects of these terms, the expression. (11) represents a generalization of Ander-
son’s mechanism of kinetic and potential exchange [10] that allows one to treat the orbital
degencracy of magnetic ions.
Generally, second order correlation contributions are accompanied by eight creation
and annihilation operators
1 1

Al n"1_ 1'
Ajyavs0°9 Aiysvsa'Djyrvic

r

i
Ajyvia

Biyever (14)

J

T .
Aiysvse Jravao Aiygvee

L

2
~—
2

and they contribute to higher order interactions as biquadratic exchange, for example.
Bilinear exchange terms are accompanied by four second quantized operators (11) so in
the second order correlation terms two pairs of these operators should give unite opera-
tors. There are two ways to do it.

1. First way consists in repiacing one pair of second quantized operators from each
ion by a unite operator, where each pair proceeds from the term of form (13)i.e. y;vy = y2v,

and ysvs = y¢vs (14), and we refer to these terms as the second order Coulomb correla~
tion terms.
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2. Second way consists in replacing one pair of second quantized operators from each
jon by a unite operator, where each pair proceeds from different terms of form (13) i.e.
92v2 = y,v7 and p3v3 = y¢Vs, and we refer to these terms as the second order exchange
correlation terms.

Note, that the second order Coulomb correlations are antiferromagnetic in sign and second
order exchange correlations are ferromagnetic in sign.

Let us consider for a moment the problem of a linearization of the two-glectron terms
in (13) by the Hartree-Fock approximation. If we perform the averaging over ground
spin-unordered state of one pair operators from the same ion (a}‘,,w Giyyer)s WE pass
to the concept of the Coulomb and exchange one-ion fields resulting from ¢ - and #,,-elec-
trons. The Coulomb field arises from averaging over (a‘;-}.lvl,, Gjyyviey and the exchange
field arises from averaging over (a}fml(r Qjyavasry- NOW, from (14) one can find that the
Hartree-Fock approximation does not change the second order Coulomb terms but do
not take into account second order exchange correlations in the Hamiltonian (11) [11].

3. Tensor operators technigue

The effective Hamiltonian (11) can be expressed as a series of irreducible tensor
operators. For this purpose, let us note that both the creation operators a}‘m and annihila-
tion operators d;,,, = (—1)°"" @;,,~, are tensor operators [12]. The product of them,
expressed in terms of double tensor operators, takes the form

Al Biyyra = g(—l)S‘“<vvv'v'|Aq> (sos—olomy Wy, (15)
nq

where the double tensor operators W ®*(yy’) are the sum of the one-electron double tensor
operators

W yy) = ; W) (17, (16)

with reduced matrix element

Osw (k) 07 I's'> = 8,ybuelo, 412 n
The index k labels the electron of a given ion. The coefficients in Eq. (15) are the Clebsch-
-Gordan coefficients and the notation [w] = 2w +1 is used.
One should notice that, in expression (11), the only components that do not vanish
are operators |mo>{mo| for which the states |my> and |mg> differ only by states on j-th
and i-th ion. So, using the relation

ITuSM) KT SM'| = Y (= 1° Mo, 21"*<TW'TulAgy (SM'S—Mlom)VT)V(S), (18)
7 ’
nq
where V(S) and V;(F) are unite irreducible tensor operators in the space of a ground
crystal térm of the i-th cation with the full spin S and pseudomomentum I’

(SMIVEES) ISM'y = (=1 M[w]~*(SM'S — M|wr),
(TplVi(D) Iy = [A]17Y*(Tu'Tulig), 19
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and orthogonality relation for the Clebsch~Gordan coefficients we obtain

T -t
POaiyxv1aaivzvzd’aiyaVacr’ajyﬂwPO

= g, ;(—1)n<71"1')’2"2|)~‘1> 73V37avald'q"y GTS|WoXyyy2) IliCS)
aq =
x (TS |W (y3pa) ITSYVigDIVig(DVi(S)V,2(S). - (20)
After some algebra we find the following form of the exchange Hamiltonian
HY, = 3 (GG, D+ 16 DSSHVADVi D). 1)
ad’

The coefficients I*4(4, /) and I}7(7, j) result from terms with = 0 and o = 1, respec-
tively, and are dependent on the form of the ground crystal term on each ion.

For the ground states of the i-th ion [i[uSM) resulting from rite "’ configuration
(the case of the strong octahedral crystal field), _
iTuSM = 15T S1)eg (I'3S2); iTuSM), (22)
the parameters I (i, j) are found to be of the form ‘
Iy )) = L Lag @), 07 = tag & 23)
124
where _
Iy (iv, jy') = Z J(iyviyvas y'viy've) <vavaldad y'viy'valda’y
x (S[S|ISY 2 UrS|W A (yy) [il'Sy (GTS|IW¥(y'y') IiTS). (24)

The explicit form of reduced matrix element TS|\ W yp)|IT'S) is expressed by 6, 6-I"
symbols and fractional parentage coefficients and can be found in Ref. [13]. If the ground
state is orbitally nondegenerate, the spin dependent part of the exchange Hamiltonian
takes the form

i ., S;,8 ;.
HY = I8, DS, = Z Iy, jy) =, (25)
- ir&jy
5 k44
where S;, is the spin of subconfiguration iy* and the g-factors are as follows
(S +1)+Sw(sry+1) Sw (Siy +1)

e TN &

For the crystal field energy comparable with the Coulomb energy on the i-th ion,
the ground crystal term results from different configurations

liTpSM) = ¥, o [iTuSM(t5y "eg™* ")), @7
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with Zoc = 1. The configurational mixing does not change the general form of the Hamil-

toman,(21), but renormalizes its parameters, only. Now, the coefficients I“ (#,j) take the

form o
12;’(i’j) Z I (171')’2,])’37'4) (28)

P1iY2
Y3av4
where for 9; =y, =7y and y3 = . =7’
Gy, iy = Z JGyvpy', j7v'y' V") vy’ |Agy <y vy v X gy (SIIS(ISY2
X Z 062062<ml|W“(W) liny (Gm||W*¥(y'y') || jm, (29

for y3 =y, =7y and y; # 72
I Gyyy2s j19) = Z J(ip1v19292, Jyvpv’) {p1vi¥2valdg) {yvpy’ Il’q’> SN
x Y dmwndm(mlIW“(vm) lin+1> mlW**(yy) [l jm), (30)

similar for y; # y4 and y; = y, =9, and for y; 5 y, and ys # y4
vI:;'(i?ﬁz’.]'?sh) S {Z}J(i?ﬁﬂ’z"z: Jr3v3vava) y1v172v214a> <73V3?4‘_’4|‘A-I‘1,'>

CSISISY ™2 Y Ut 10l s 1 IR IW A1) Hlin+15 m [ W (y374) [lim+1). @31

For simplicity we have denoted
liny = Iy "(TuS,)ep**"(I:S,); iT'S). (32)

The explicit form of nondiagonal reduced matrix element of double tensor operators
is to be found in Ref. [13].

4. Interpretation — general channels in superexchange

To explain the physical meaning of the contributions which appeared in formulas
(28)-(32), it is convenient to improve the concept: of simple and collective channels in
superexchange.

Let us first consider the simplest case, when each ion is in orbitally nondegenerate
state 4. Because of this, coefficients {yvyv’'|4,e,> do not vanish for v = v’ only, and
Eq. (24) takes the form '

glygn

ML

ka)" 2-] . PN, ‘ 34
O] G, jyv), (G4

J(ivv, ') (33)

I:‘Je‘i‘(w, W)=

and

TA141 . r
12121 ( y’
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where J(iyv, jy'v') = J@yvyv, jy'v'y'v) is given in Eq. (12). Assuming that the spin S,
of each subconfiguration takes its maximum value due to Hund’s rule, the exchange
Hamiltonian can be written as

HY = (T84, D+I244(, HSSS))

3 (FA(iyv, jy'v) 4+ TA21Ciyy, jy'V)S08yy)
ke
v

R TR N
=2 E J(iyv, jy'v') <%+ —w), (35)
L - DI
77'
vy
where s;,, and s;,.,- are spin operators of one-electron states |iyv) and |jyv'>. So, we
can decompose the exchange parameter I214Y(7,7) standing by the bilinear form S;S;

of the total spins of ions into the sum of simple contributions IZAL4(iyv, jy'v'), standing
by the bilinear forms of the spins of one-electron states. We refer to these contributions

§ —————— T ————— ®
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Fig. 1. Possible exchange paths between two e, states

as to the contributions from simple channels (Fig. 1) and they are analytical expressions
for the Goodenough—-Kanamori rules. Examples, where the simple channel picture can be
applied, are transition metal compounds. with the unpaired electrons on orbitals #,,(d>),



499

e,(d®) and t,,+e,(d%). In the first case the summation runs over simple #,,v 2 f,,v" chan-
nels, in the second — over e,v = e’ channels, in the third — over 1,,v 2 t,,V', ;v 2 ¢V’
and 1,,v @ e,v’ channels, respectively. This kind of simple channels approach was consid-
ered by Eremin and Rokitin [6], but these authors started from a different form of the
Hamiltonian.

If we have deal with orbital degeneracy, the summation over simple channels only
(Fig. 2a) is not valid. New contributions appear, like these in Fig. 2b, ¢, d which result

n -~ n
2
=
g —& ——e
b
14 \\\ g
~a
~
n — n
-
e
/
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-
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Fig. 2. Possible types of exchange paths between two #,, states in the case of orbital degeneracy

from the potential exchange, kinetic exchange, second order Coulomb correlations and
the second order exchange correlations. One can notice that, if ions are in their ground
configuration t,',‘;ezz, all contributions described by diagrams from Fig. 2 do not change k;
and k, on the same ion. Thus, also in this case the exchange Hamiltonian can be

decomposed into the sum of contributions from some channels (Fig. 3)

HY = Z Z (I.’}i'(w, )+ Lr Gy, jy) ——”—”—)]‘Vzi(l" WigdD), (36)

18y

. Al Y
aq’



500

where S;, is the spin of subconfiguration y* and the parameter I;;,'(iy, Jv') is given in Eq. (24).
Fig. 3 is very similar to Fig. 1, but now we deal with the collective channels between
subconfigurations y%* = y%* that cannot be decomposed into the sum of simple channels

without missing any significant terms.

a
Ky —_— — J— k1
g Sy e g
] kp
1 e 1,
'tzg 2g
b
K ky
okt — G
k.
ke ———> — 2
t25 —e=== 2
c
Ky o L)
fg == i
A b\
\é ~ P
Ky 2
tag ~ t2g
d
K
ol o — e
e
Pt
K Yl kz
tye ——————= tag

Fig. 3. Collective channels in the case of orbital degeneracy

Now, let us try to consider the configurational mixing. In this case, even in the absence
of orbital degeneracy, simple channels picture is not valid for the description of exchange
contributions. Diagrams which appear are similar to those in Fig. 2, but now paths
connecting different subconfigurations from the same ion, i.e. k; and k, change. We can
now decompose the exchange Hamiltonian as follows '

o ~ade SN T P
HY = E {E [I%’(lh,m)+lﬁ.ﬁ(%Jv3)M]
gihgjv:s

Ax y173
;ooaq

Z . NN
+ [Ilﬁ'(l?ﬂ’z,]73')’3)4'12:'(1717’2,J?s’)’s) m:l

Jrs

1173
2% Y1
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iy

- . 8,8,
+ E [Iﬁé(ivlvbjv3v4)+12}(171v1,mh) 2 ]

7173 -
ya*73

+ g T2 Gy 172 jy3v4)+123’(w1v2,jvsmsisjl} VDV (D). (37N
Y173
P2#EY1L V4FYs

The first term, as in the previous case, is a sum over collective channels of subconfiguration-
-subconfiguration interaction y*! = y%* where the parameter I3 (iy,, jys) is given in Eq. (29).
The next two terms contain collective channels for subconfiguration-configuration interac-
tion y¥t & (y%2 <5 y%*) with the configurational changing on the one ion, where the param-
eter I % (iy171, j¥sY4) is given in Eq. (30). In the same way one can obtain (172, Jy3¥3)-
The last term in Eq. (37) is the collective channel for configuration-configuration interaction
with the configurational changing on each ion (y5' <5 7)) = (555 ys*) where the

parameter I:(iy,7,, jysys) is given in Eq. (31).

5. Conclusions

We have formulated theory of superexchange — in"tthe case of orbital degeneracy
and configurational mixing — based on the localized-electron model. The perturbation
procedure in case of the Hamiltonian in the second quantized form and the irreducible
tensor operators technique were used to obtain the effective Hamiltonian, expressed in
terms of total spins §; and pseudomomentum tensor operators V,.,’:(F) of the ground terms
25:+1p. from different ions. It has the properties of the second quantized one (electrons
from different ions are undistinguishable), but the number of electrons on each ion is
preserved, This additional condition restricts the application of the Hamiltonians of this
kind to systems with a good localization of electrons.

In this work, we have started from the strong crystal-field coupling scheme and carried
out the detail considerations of the configurational mixing. It implies the generation of
a new type of electron transfers. To give the physical interpretation of all contributions,
the general channels concept was developed. In the simplest case, when the ground crystal
term is 4; (4,), we can decompose the exchange Hamiltonian into the sum of simple chan-
nels (34) — pairs of interacting half-filled orbitals. In the case of orbital degeneracy, it
has been shown that the concept of simple channels is not valid, but we can decompose
the exchange Hamiltonian into the sum of collective channels — pairs of interacting
subconfigurations (36). For the configurational mixing yet another kind of collective
channels has appeared (37). They contain interactions between subconfiguration and con-
figuration with configurational changing on one ion and interaction between configurations
with configurational changing on both ions, respectively. Thus, we have to add new terms
to the exchange Hamiltonian (Eq. (37)). Simultaneously, the origin and influence of the
electron-correlation effects in the microscopic theory were shown.
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The typical compounds, which the theory is valid for, are X0, XO,, KXF;, LaXO,,
and a lot of others with X as impurities. The typical X i.e. 4" ions are

d\(Ti3+, V4, Cr+, Nb*+, La2+, ReS+, Ta*t, ...) g
d*(Ti%+, V3+, Cr4+, Mn®+, FeSt, ..) -
d3(V2+, Cr3t, Mn*t, Nb?+, Mo3+, Te*+, Ret, ...)

d¥(Cr?+, Mn3+, Mo?2t, Tc3+, Ru*t, Os*t, ..)

d3(Cr'*, Mn?t, Fe3+, Mo+, Tc2+, Ru3+, Rh*t, Ir4+, ..))

d8(Te?t, Co3t, Ru?t, Rh3+, Ir3+, Rt*, ...)

d7(Co?+, Ni®+, Rh2+, Pd3+ Pt3+, ...)

d¥(Co'+, Ni?+, Cu’+, ..))

d°(Cu?t, Nitt, Ag?+, ..)

Although, in this work the O, symmetry has been used, the theory is valid for other
symmetries.

The author is indebted to Professor L. Kowalewski and dr M. Kurzyiski for many
discussions on the subject and for reading the manuscript.
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