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The interaction contribution to the magnetic-field energy associated with two moving
charges g; and ¢, with velocities v, and v, separated by a spatial vector s is evaluated to order
(v1v2/c?) by direct integration over all space. It is shown that the contribution to the magnetic
interaction energy from a spherical shell of radius » > s centred on one particle is equal to
(29192/3¢*)(vy - v2)r—2dr, while for a shell with r < s the contribution is (g:92/3¢®)[3(v; - s)(v2 -
* §)/s*— (b - 02))s~%rdr. After integration the negative of the usual expression (—g;42{2sc?)
[(v1 * 02)+ (01 * $)(v2 * 8)/s*] for the interaction contribution to the Hamiltonian for two moving
charged particles is obtained. The change in the electric-field energy due to effects of retardation
on electric fields does not contain any terms proportional to (v1,/c?), and so thé convention
sometimes adopted of calling [— (g192/s¢?)(v1 - v,)] the magnetic interaction and attributing the
remainder of the interaction, viz. (g1g2/2s¢®)[(v, - v2)— vy * F)(v; - #)[5%], to retardation appears
to be misleading. .

1. Introduction,

The generally accepted expression for the terms of second order in the particle velocities.
in the Hamiltonian for the interaction between two charged particles was first derived
by Darwin [1]. For particles with charges ¢; and ¢, and velocities v, and v, at r, and r,,
this interaction Hj, can be written in the form

Hyp = (—'(1142/2502) [(v1 - 02)+(v; - 5) (v s)/sz]’ (1)
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where s = (r,—ry). Darwin obtained this result by considerations involving magnetic
vector potentials and retarded electric potentials in a Lorentz gauge. In this gauge Hp can
be decomposed into two terms,

Hy,=H,+H,, ®
where
Hy = (—q1q2/s¢”) (vy * v2) (3)
arises from the unretarded interaction involving the magnetic vector potential, and
Hj = (—q192/25¢*) [(v, - 8) (v2 * 8)[s*— (v, * "2)] )

is the contribution to the interaction due to effects of retardation on the scalar potential.
Quantum mechanical generalizations of this result have been made by various authors,
either by simply writing down the operator ‘equivalent to the velocity [2] or by use of
perturbation theory in quantum electrodynamics, with the electromagnetic interaction
with the particles treated as a perturbation [3, 4]'.

The term H; of (3) is sometimes referred to as the magnetic energy [6] and the term H,
of (4) is referred to as the retardation energy [4, 6]. However Jackson [7], using vector
and scalar potentials in a Coulomb gauge, has shown that the whole of the interaction
Hp, can be obtained without consideration of effects of retardation. Thus, when calcula-
tions are made by use of potentials, whether part of the interaction is attributed to retarda-
tion or not appears to depend on the choice of gauge.

Since electric and magnetic fields are normally regarded as more physical quantities
than potentials, some insight into the problem of the interaction between moving charged
particles may be obtained by integrating the interaction contribution to the magnetic-field
energy over all space. Performing such an integration enables us to show that the total
Darwin interaction Hj, is equal to the negative of the magnetic-field interaction energy.
‘We also show that there are no terms proportional to (vyv,/c?) due to retardation in the
electric-field interaction energy.

During the course of performing the integrations we obtain some information about
the spatial distribution of the interaction contribution to the magnetic-ficld energy, on
which we report. A similar calculation giving information about the spatial distribution
.of the electric-field energy for the Coulomb interaction between two charged particles

1 It has been shown that for heavy atoms the expectation value of the quantum mechanical operator
.corresponding to H; is of the opposite siga to, and has a magnitude of the order of 10% of, the expectation
walue of the operator corresponding to H; [4]. Inclusion of Hj in the Hamiltonian is an important factor
4in helping to provide agreement between theory and experiment for K-shell binding energies of heavy atoms.
For the atoms W, Hg and Pb, the term H, in the Hamiltonian gives a contribution to K-shell binding energies
varying from 1.18 to 1.59 Ry [4]. With inclusion of this contribution, agreement between theoretical atomic
K-shell bmdmg energies and experimental values stated to be obtained from results on solids by adding
the work functions for solids is on average within about 0.1 Ry for the three atoms mentioned. However,
if other necessary corrections [5] to the solid-state K~shell binding energies were made besides the correction
for work functions, it is possible that the agreement would be less accurate.
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has been made recently by one of the authors [8]. For this case it was shown that there
is no pet contribution to the interaction energy from any spherical volume centred on
one of the charges and having a radius less than the distance between the charges.

In Section 2 we outline our procedure for integrating the interaction contribution
I to the magnetic-field energy, and show why there is no contribution of order (vlvz/cz) to
the electric-field interaction energy. The reason that Hp is equal to — I rather than +1 is
discussed briefly. In Section 3 we show some graphs and contour plots demonstrating the
spatial distribution of the magnetic-field 1nteract10n energy for two special cases, v, | lvzlls
and v,]|[v, L.

We use equations appropriate for the unrationalised Gaussian system of units.

2. Field-interaction energies of order (viv,/c?)

Let us consider two charges ¢; at points r; moving with velocities v; (i = 1,2). In
order to avoid confusion with the notation H for a Hamiltonian, we use the symbol F
to denote magnetic fields. To order (y;/c), the magnetic field F; at r due to the charge g, is
given by [9]

Fy= [‘Ii”iX(V_'i)]/(clr_'i|3)- )

We choose a system of coordinates in which

ry =(0,0,0), r,=1(0,0,5); ()}
thus
s=(r;—ry) =(0,0,59). )
We write
v = (I, my, oy, ®

where /;, m; and n; are the directional cosines of v;. Then, introducing spherical polar
coordinates with s as polar axis, 0 as colatitude and ¢ as azimuth measured from the x axis,
we find from (5) to (8) that, to order (v;/c)

F, = (q,v,/cr®) [m cos @ —n, sin 0 sin ¢, n, sin 0 cos ¢—1, cos 6,
1, sin 0 sin ¢ —m, sin 6 cos ¢], ©
F, = q,0,¢7 (r*—2rs cos 0+5%)~ G/
x [m,(r cos 0 —s)—n,r sin 0 sin ¢, n,r sin 6 cos ¢—1,(r cos 8—s),
r(l, sin 0 sin ¢ —m, sin 0 cos ¢)]. (10)

The interaction contribution 7 to the magnetic-field energy can be obtained by inte-
grating (F, - F,[4n) successively over ¢, 6 and r. The only non-zero contributions remaining
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after integration over ¢ are those involving the products /;/,, m,m, and n,n,. Introducing
the notation

A = (91920102 (il +mym, +>2">1h2) = (4:92/¢*) [(v; - ©)+(vy - 8) (v, °8)/s*]  (11)

and
B = (‘11‘1201”2/02) (lily+mym,) = (9142/¢*) [(vy - v)— (01 - 5) (v, ‘s)/Sz]’ 12)
we find what

I=(1/am)§ (Fy - Fy)av
L 1 »
= [ dr | dA[Ar—2Bsi+(2B— A)rA*]|[4(* +5* —2rsh)®P], (13)
o -1
where de denotes an integral over all space and we have written

cos = A . (14

We perform the integral over A by rewriting the numerator in (13) as a sum of terms
proportional to (r24-s2—2rsd)" (n = 0, 1, 2) with coefficients independent of 1. We find

I= F dr{[(2B— A)/48r*s*] [Ir+51> —|r =sI°]+[(4/8r°s)— (2B~ A)[8s"] [Ir+s| —Ir—s[]

+(1/16r%s%) (r* —s) [2B(r* +57) — A(r* —s%)] [lr—s|"t=lr+slI"'}
= Il + 12, (15)
where I, and I, are contributions from inside and outside a sphere of radius s. Using (11),
(12) and (15) we find that
Iy = (21g2/e®) § (113) [3(0y - 5) (0 - 95 = o - 02)]s*rdr

= (1/6) (4142/5¢®) [3(v; - 5) (v - )Is* = (vi " ©2)], (16)

and
I = (4102/¢*) § 2[3) oy - 03~ 2dr = (203) (q32fse) (v ). a7

From (15) to (17) we see that I = — Hy,, where Hp is given by (1).
. To second order in particle velocities, the Hamiltonian H for an electromagnetic
field plus charged particles can be written as

H = H,+H,+H,, (18)



where [10]
H; = (1/87) § (E?—EZ+B*)dV | (19)

is the Hamiltonian of the electromagnetic field, H, denotes the particle Hamiltonian and
H,,, denotes the Hamiltonian for the interaction between the particles and fields. In (19)
E, and E, denote the magnitudes of the parts of the electric field associated in a Lorentz
gauge with the time derivative of the magnetic vector potential and with the gradient of
the scalar potential respectively, and B is the magnitude of the magnetic induction?. To
second order in particle velocities, the quantity 7 of (15) to (17) represents the interaction
contribution to the magnetic-field part of H; of (19). -

. After the fields due to the particles have been eliminated, the terms in the mteractlon _
between particles which are of order (v;v,/c?) have been shown [1-4] to be equal to ' Hyp
of (1), while our work shows that the interaction contribution to the magnetic-field energy
is equal to — Hp. Thus H,,, alone must contribute 2Hj, to the particle-particle interaction,
and then the field interaction energy — Hy, brings the net interaction between particles
down to Hp.

In order to see that there is no contrlbutxon of order (v 102/¢?) to the electric-field interac-
tion energy we merely note that, to order (v7/c?), the electric field .E; at r due to a charge
g; at r; is given by

E; = [q(r—r)lr—1/’] [1-% (ile)*(3 cos™ f;— 1)] (20)

where 0; denotes the angle between »;, and and (_r—r,-). This result may be obtained from
the general expression for the field due to a moving charge-[11] by expanding in powers
of the velocity. Since the first correction to the static field is of order (v/c)?, there can
be no contribution to the electric-field- energy-associated- with two-particles proportional
to (v,v,/c?). We have not verified by direct integration that there are no terms in the interac-
tion contribution to the field energy proportional to v? or v7 separately, but without
performing the integrations we can make use of the empirical analysis by Ampére of
interactions between electric circuits reported by Whlttaker [12] to infer that there will
be no such terms. - »

Thus the total interaction contribution to the magnetic- plus electnc—ﬁeld energies
is equal to I given by (15) to (17). This quantity 7'="— Hy,. The total Darwin interaction
is brought to Hy by two terms equal to Hp, associated with the interaction between the
particles and the field potentials at the particles. Since we have shown that the contribu-
tion — Hy, to the interaction due to the pure-field part of the Hamiltonian has nothing
to do with retardation, and.for the _contribution 2Hy, from the particle-field interactions
it depends on the choice of gauge for the potentials whether- retardation appears to be
involved, we consider that to call H, of (2) the magnetic efiergy and H,, of (3) the retardation
energy is mlsleadmg '

2 Despite the negative sign in-front-of E£2 in (19), the expectation value of the total Hamiltonian for
charged particles at rest including their electric fields is proportional to the same integral of E?2 with a posi-
tive sign, since e.g. for two particles the interaction of each particle with the potential due to the other is
equal in magditude to the integral over all space of (1/8=)EZ.
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3. Spatial distribution of the magnetic interaction energy

‘Since particle-field interactions are normally written in terms of charges or currents
multiplied by potentials, the question of the location of the energy is avoided. However,
we do have definite information about the location of the interaction contribution to the
pure-field term in the Hamiltonian. If the absolute magnitude of this interaction energy
changes, then the absolute magnitude of the value of the interaction of each particle with
the field will change by the same amount. Thus it is plausible to assume that the total
velocity-dependent interaction energy between the particles should be considered to have
the same type of distribution in space as the interaction contribution to the magnetic-
field energy. In this section we discuss the spatial distribution of this magnetic interaction
energy. Knowledge of this distribution is of interest from the point of view of forming
a picture of the processes leading to particle interactions, although not necessary for
calculations of forces between the particles.

First we consider the average distribution over spherical shells centred on one particle.
For a shell between radii r and (r+dr) we see from (17) that for r > s the magnetic in-
teraction energy, which we write as A(r)dr, is proportional to {1/r2)dr, while from (16) we
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Fig. 1. Plots of the function 4(r), where 4(r)dr is the contribution to the magnetic-field interaction energy ¥
from a shell lying between radii r and (r-+dr): (a) villvalls; (b) v;]lo2 Ls
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see that for r < s, A(r)dr is proportional to rdr. For a fixed angle between »; and v, the
contributions from shells with r > s are independent of the direction of s, while the contri-
butions from shells with r < s change in both magnitude and sign as the direction of s
changes. If v, is parallel to v,, A(r) is continuous at r = s if s is parallel to the velocities,
but for other directions of s there is a discontinuity. In Fig. 1 we plot A(r) for v,||v, for
two cases (i) s||v; and (if) s L v;. The existence of terms proportional to r for shells with r < s
contrasts with results for the electric-field energy associated with the Coulomb interaction,
which show that there is no contribution to this energy from shells with r < s [8].

-

-2

Fig. 2. Contour plots of the function (X, ¥, Z) defined by (21) and (22) for special planes for v; = (0, 0, v;)
(t=12), s=(0,0,5), ic. v1]loalls. @) X=0(or Y=0); b) Z=0
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To obtain a more detailed picture of the distribution of magnetic-field interaction
energy, we use (9) and (10) to construct some contour plots of a function f(X, ¥, Z) defined
by '

(X, Y, Z) = (*s*141q,0102) (Fy - F5), 21
where ’
X =xs,Y = yls, Z = z/s. 22)

We consider two special cases (i) vy = (0, 0, v1), v, = (0, 0, v2) (i.c. v]|v,||s, remembering
(7)), and (i) v; = (v1,0,0), v, = (v2,0,0) (i.e. v,||v; L5s). These plots are shown in

-

2
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Fig. 3. As Fig. 2, but witho; = (#;,0,0)({ = 1,2),5 = (0, 0, 5), i.e. ol ls. @ X=0;;0) Y=0;(0)Z =0

Figs. 2 and 3. For comparison we note that the interaction contribution to the static
electric-field energy for particles with the same separation has contour forms of the type of
Fig. 3(a) for X = 0 or ¥ = 0 but has forms of the type of Fig. 2(b) for the plane Z = 0.

4. Conclusions

It appears to be misleading to attribute part of the Darwin interaction between moving
charged particles to retardation. When calculations are made by use of potentials, whether
part of the interaction is attributed to retardation depends on the choice of gauge for the
potentials. The total Darwin interaction is equal to the negative of the integral over all
space of the interaction contribution to the magnetic-field energy. A high proportion of
this interaction energy is located in a region outside a sphere centred on one charge with
a radius equal to the separation between the charges. The contribution to the magnetic-field
interaction energy from this region has the same sign as the product ¢,g,(v; - v,), and
has a magnitude at least twice as large as that of the contribution from within the same
sphere. The latter can have the same sign as ¢;9,(v; - v,) or the opposite one, depending
on the relative orientation of v, v, and s = (r,—r;).

We should like to thank P. Lalousis for writing a computer program to provide the
contour plots shown in Figs. 2 and 3.
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