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A simple approach to the problem of the influence of intermolecular interactions
on the isotropic Raman band profile I,;p(w) based on the idea of different time scales for
electronic and nuclear motion is given. The proposed method gives a physical insight into
short-time fluctuations of the intermolecular potential and helps to find the dominant type
of the intermolecular interactions in the picosecond time region.

1. Introduction

Nafie and Peticolas [1], Sykora [2], Bartoli and Litovitz [3], Bratos et al. [4] have
developed theories of the spontaneous Raman scattering that explicitly take into account
vibrational relaxation. They derive the following expression:

Guan(1) = <QMQO) ~ | Lin(@)e” " do, (D

Lp(w) = IH(CO)_%I_L(@):
where the bracket {...) represents an equilibrium statistical average, zero frequency in
(1) corresponds in fact to the frequency of the band centre w,, Q(t) is the normal coordinate
associated with the investigated normal mode; / (w) and I, (®) are the polarized and de-
polarized component of the Raman-scattered light respectively. Equation (1) gives the
time-correlation function of Q(¢) as the Fourier transform of the ““isotropic” Raman inten-
sity I ;,(w). Thus, if G;,(¢) decays, for example, exponentially with a time constant 79— 14
is related to the width at half-height of I ;(w). Consequently, G,;(¢) provides a measure
of the rate of loss of “memory” of Q(¢). i.e. the rate of dephasing of Q(f) and z, is the
dephasing time of the incoherent molecular normal vibration Q. Information on vibra-
tional dephasing is also obtained from experiments of von der Linde, Laubereau,
Kaiser [5, 6].
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At present there exist several hipotheses accenting various possible mechanisms which
may contribute to the broadening of the 7,;,(w) such as: a) translational collisions [7, 9],
b) intermolecular energy transfer [8], ¢) resonance energy transfer (flip-flop) [10, 12, 13].
However, to our knowledge there is no convincing theory or experiment which can clearly
show what kind of interactions are indeed efficient and give main, most dominant contri-
bution to the isotropic band broadenmg In this paper we present a procedure Wthh
we hope, although partially will be able to help to answer that question.

2. Theory

The influence of the intermolecular potential on the Raman line shape can be investi-
gated by considering, for simplicity, a homonuclear diatomic molecule in a liquid per-
turbed by the local field associated with sourrounding molecules. The essence of our
approach consists in the use of different time scales of response to the external perturba-
tion for the electronic and nuclear motion in a molecule. Since the electrons move much
more rapidly than nuclei — due to their small mass — their response to an external field
is relatively rapid and they, in turn, or more precisely their shift in energy or density, serves
as the actual perturbation experienced by the nuclei. In other words, we assume that
relatively slowly moving nuclei experience external interactions indirectly through per-
turbations of the electronic density, i.e. there is no direct interaction between the fluctuating
local field and the nuclei themselves. The situation here is similar, in the spirit, to that of
the Born-Oppenheimer approximation [14] in the theory of intermolecular potential.
What we are doing here is the transfer of the Born-Oppenheimer idea to the theory of

intermolecular interactions. As one knows, in the equation of motion for the vibrating
2

nuclei, the force constant is represented phenomenologically by f = < ) , where V
(]

dQ?
is the intramolecular potential [14]. In agreement with our concept, the molecular oscillator
feels stochastic fluctuations of the intermolecular potential as a time modulation of its
force constant. Therefore, if we can find the time dependence of f(t) we can indicate the
dominant mechanism perturbing the harmonic motion of a molecular vibrator in liquid.
For instance, modulation of the f(¢) with a frequency w, suggests resonance energy transfer;
modulation of the f(¢) with a characteristic frequency @ ,; < ®, suggests rather a colli-
sionlike model of the interaction, ...etc.

In order to find time correlation function of the f(¢) we write the equation of motion:

uQ(@t) = —FHO(), )

where u is the reduced mass and é(t) is a shorthand notation of the second time derivative
of the normal coordinate . Since we are interested in the broadening of the “isotropic”
intensity I,;,(w) around the band centre w,, it is convenient to write:

@) = fo+f, 3)
0(1) = @) - €, | 3"
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where fy = oju. relations (3) equation (2) reduces to

Q(r)+zzwog<t) . -—JQ 20, @

Hence we obtain the following expression for the correlati~pn.functions:
KOHO(0)) —4woQNO0)y ~ {ADA0) <QHQ0)) ®)

The separate averéging of f(¢) and Q(z) on the right hand side of Eq. (5) is justified if
we take into account that a time fluctuation of f{¢) is of the order of 10~13 sec — much
shorter than correlation time .describing vibrational motion Q(¢) [17]. Notice, that

<OMO)> ~ j ‘_ (@) do o (6"
and |
<OMO)y ~ _f o*I(w)e “daw. . (6")

In both Egs. (6) we have employed an expression from the transform theory whlch deals
with relationship of a transform to its derivative [15].
Using relations (1) and (6) in Eq. (5) we have

j [0* —Qwew) ]Iv;b(w)e_lwtdw
= . @)
| Li(@)e *dw

4OTON

Therefore we get the goal of this paper.

It is clear from Eq. (7) that the main contribution to the function < f(t)f(0)> gives the
Fourier transform of the term (20,0)21,;,(w) because (2w,w)> > w* for reasonable values
of o (except very wide lines). Therefore, we can neglect the term w*/,;(w) in Eq. (7) and
consequently the term Q(¢) in Eq. (4). Let us introduce time dependent angular frequency
a(t) = oo +o(t) = (f()/w''2. Hence f(t)n = 2woa(t) +0*(t) = 2wow(t) and Eq. (4)
becomes

0(t) = io()Q(). ©)

The vibrational correlation function after these approximations is given by

QMO ifwwrr
)= —F 5 = o . 9
Ga®= "oy =" 2 ©

Here we catch contact with previous stochastic-type considerations where the possibility
of this type of vibrational correlation function was suggested [4] and applied [16-18].
Our next step is the second cumulant approx1mat10n of the leb(t) defined by Eq. (9),

S ff (ot Yot )ydt'dt’”’
Gyp(f) = e 99 (10)
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and

2

d
(o(a(0)) = — 75 {ln G,;,(1}. (11)y

We can also write the relation (11) in the Fourier transform representation,

) 0 2
| 0’ (w)e *do | ol y(we do
{o(o(0)) = —% ' —~ 1= — | . (12)
| Lip(e)e “dw | Li(w)e “do

At last, it is worth to mention here that Eqs. (7), (11) and (12) are valid not only for
diatomic molecules but also for nondegenerate modes in polyatomic molecules. Moreover,
in our classical approach,. the intermolecular potential perturbed by the external forces
is represented phenomenologically by the force constant f{¢). The more rigorous, quantum
mechanical approach, needs explicit definition of the intermolecular potentali and leads
to the quite complicated molecular dynamics calculations [11]. In the next section we will
show an application of Egs. (7) and (12) to the study of the short-time behaviour of
molecules in liquid methyl iodide.

3. Experimental

Measurements were made by means of spectrophotometer Cary 82 with the slit
1.2 cm~! for pure liquid CH,J at the temperature 300 K. This molecule has one well
separated band with vy = 525 cm~*. The discussed band is asymmetric due to the presence
of the hot band. This hot band can be extracted by the method described by Goldberg
[19]. The band profile was measured up to 125 cm~* from v,. The slit width was narrower
about six times than the measured /() band width and about four times than I ()
band width. The numerical deconvolution method proposed by Jones [20] was applied.
In the observed time scale (02 psec) no differences between Fourier transforms of the
convoluted and deconvoluted band profiles have been found.

4. Results and discussion

Both Fourier transforms obtained according to Eqgs. (7) and (12) are presented in
Fig. 1. Moreover, for comparison, in Fig. 1 we present also the common vibrational
correlation function

QWO ~ [ Lo)e™*d> = Guu(d). (13

Fig. 1 shows generally satisfactory agreement between functions {f(¢)f(0)) and
{o(t)w(0)>, so for the investigated band the second cumulant approximation is quite good.
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Let us firstly discuss the errors of the correlation functions. Our estimates have indi-
cated that among several factors which contribute to the experimental error (slit
function, accuracy in determining @, and baseline) the most important is the error
produced by the cut-off of the experimental curve — in the present case L;,(®). In practice,

=2

tlpsec]

Fig. 1. Experimental correlation functions for A band (C-J stretch, vo = 525 cm™, temperature 7' = 300°K)
of pure liquid CH,J; a) <f()f(0)> computed according to Eq. (7), b) <a(#)w(0)> computed according to

o0
Eq. (12), ¢) vibrational correlation function LO@00)> ~ _[ Lip(w)e- @ dw. Note a great difference between

o]

To = f Gyin(H)dt = 2.4 psec and 7 = j' {f@RfO))dt = 0.05 psec

o ]

one can measure the intensity I°**(w) in the finite frequency region we—®, < @ < Wo + ..
In other words

I’*(0) = I'*(0) - "(w), 14)
where
A 1 for wy—0, < @ < W+,
0 for w < wy—0, and @ > Wy+O,.
Hence

SOfOY™ ~ F{[0* ~wow) ™ (@)}
= F{[0* —Qwew)’ "™ (@)} * F{n(w)}

= (fOf(0))™ » 2w, sinc (@1), (15)
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where # denotes frequency Fourier transform and star denotes convolution,
sin (w,t)
ot

C

sinc (w 1) =

The above equation indicates that the correlat1on function {f(#)f(0)>""* is convoluted
with a periodical function 2w, sinc (7). In order to obtain {f{£)f(0)>*™ the deconvolution
procedure ought to be applied. In our case v, = 125 cm-1! (w, = 2mev,) so the value
sinc (w.t) equals zero in the time points ¢, = nnjo, (f, = 0.13 psec, t, = 0.26 psec, ...).
Our experimentally obtained function {f{£)0)>°* looks like a damped cosine first time
cutting through t-axis at 0.2 psec. In this unfortunate case—similar periods—deconvolution.
procedure cannot be applied eﬂ'ectlvely

It is usually assumed that the correlation function approaches an exponential function
of the form exp (~ #/z). Let us then consider this simple form of the {fF(0)>™ relaxation
process, which has been already applied by Rothschild [17]. It is true that the convolution
exp (—1/7) # sinc (w,t) provides the periodical damping function if 7 < 0.04 psec, but
it is impossible to achieve a reasonable fitting to {f(1A0))***((A1)f(0)>°* and exp (—#/z)

re Lt I | == o
0.2 0.4 tipsect 0.2 04 tlpsect

-
tpsec]

&9

Fig. 2. The functions describing the time development of sinc(wct) (v = 125 cm™!) convoluted with

exponential functions (with damping factors a—7 = 2 psec; b—7 = 0.16 psec;c—7 = 0.05 psec) and

damping cosine e(—#/7) coswrt (v = 0.16 psec, v, = 50cm™1). Arrows indicate the points on r-axis
where the experimental curve {f()f(0)> equals zero

* sinc (wt) cross the time axis at different points). When the relaxation time t increases;
the negative part of the computed function exp (—¢/z) * sinc (w.t) deereases and at last
for 7 > 0.1 psec it becomes completely positive (see Fig. 2). It is clear that the exponential
form of the {f(1)f(0)>"" is not a satisfactory approximation.

However, we can get easily a good agreement with the experimental curve if we assume
fO)f(0))"™ in the form exp (—1/7) - cos wy with the parameters value: t = 0.16 psec,
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wp = 2mevy, vy = 50+10cm=*. We emphasize that only pulsed functions with a negative
part convoluted with sinc (w,t) can reproduce observed curve. Of course, the damped
cosine proposed here is only one example from the large class of such functions.

Now we want to focus our attention on a characteristic time behaviour of the {f{2)f(0)>
and we want to try to explain quantitatively this interesting plot. To do this we assume
that the time dependence of the force constant f(r) arises from translational ‘motion,
reorientational processes and other vibrational motions of the same and adjacent mole-
cules ie. f(t) = fIR(®), A1), q(t)) = fle(t)), where &(t) = {R(2), Q(t), ¢(1)} represents the set
of the translational, angular and vibrational coordinates. The force constant f(#) can be
expanded around temporary equilibrium position as follows

N VOof\
F = fo+51) = feo)+ Z (5;) (1) (16)
The summations are made on translational, angular and vibrational coordinates of the
nearest molecules.
Consequently,
of of
ooy ~ > (5 (5, - oo an
& /o \C/o

i,j

Above equation shows that even in the simple case of binary interactions there are several
different relaxation mechanisms such as: translational <{JR(t)6R(0)), rotational
{8Q(1)6Q(0)), vibrational {q(£)q(0)>, fluctuations and cross terms <SR(#)6Q(0)),
{89(t)3q(0)y e.t.c. It is not easy to establish here, on the basis of one experiment at one
temperature, which mechanism gives the main contribution to the investigated band,
but the characteristic frequency of this process is 50+ 10 cm~*. Note, that “far infrared”
value v, = 50+10 cm~! is not unrealistic. It is known [21] that large amplitude trans-
latory-rotatory fluctuations occur in liquids with peak frequencies of the order of
50-100 cm~?, It would be interesting to apply this procedure to experimental study of the
temperature, pressure and solvent effects on Raman and IR line shapes in order to estab-
lish the detailed nature of the perturbation process.

The authors would like to thank dr E. Kluk for helpful discussion and Mr M. Pro-
niewicz and G. Pytasz for assistance in recording the specira.
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