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CLASSIFICATION OF SYMMETRIC COORDINATES FOR POINT
CLUSTERS. II. EXAMPLES: A REGULAR TETRAHEDRON AND
A CUBE

By M. Kuzma*, I. Kuprowskr** aANp T. LULEK
Institute of Physics, A. Mickiewicz University, Poznafi***
(Received June 22, 1979)

A general group-theoretical method of classifying the symmetric coordinates of point
clusters has been demonstrated for the nodes of a regular tetrahedron and a cube. This
method is based on a factorisation of the mechanical representation into a positional and
vector part. A procedure to determine an irreducible basis for the relevant mechanical
representations has been explicitly demonstrated, showing that the proposed classification
for these cases is complete. The classification schemes, associated with several chains of
subgroups describing possible descents in symmetry, have been presented.

1. Introduction

In a previous paper of one of us [1], denoted hereafter by I, we proposed a general
method for classifying and determining the symmetric coordinates for clusters of points,
exhibiting in their equilibrium position the symmetry of a point group G. Classification
schemes related to a descent in symmetry of a cluster have been discussed in that paper.
In the present paper we are going to demonstrate this method for two nontrivial cases:
clusters consisting of all nodes of a regular tetrahedron, and of a cube. We use throughout
this paper the notation introduced in I.
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2. Symmetric coordinates for a regular tetrahedron

We consider a regular tetrahedron, spanned on nodes 1 2 3 4 (see Fig. 1), with the
symmetry group T,. Using Fig. 1, one can establish each permutation a(g) of Eq. (L.5),
determining the positional representation P (1.6), e.g.

; 1234 1234 1234
a(Csyy) = (2 14 3)= G(CZy)‘—‘ (3 41 2>a 0(Cy.) = (4 392 1)’

(1234 1 (1234 (1234 m
“(C")"(1 34 z)‘ gl < (1 42 3)’ 9(5s2) ‘(3 14 2)’ @
5]

Z 8

Fig. 1. The labeling of nodes of a cube and a tetrahedron

where Cy, is the three-fold axis directed from the origin to the node 1. A stability group for
each node G; is isomorphic with Cj,, and the stability group for the cluster, G(p), consists
only of the unit element, so that the constituent set Z (T is isomorphic with Tj.

Using Eq. (I. 12) and the standard character theory, one can obtain the decomposition
(L. 10) of the positional representation P into irreducible representations A of the group
T, in a form

P=A,0T,, (2)

where T, is the vector representation V for the group T (we use the Mulliken notation:
Ay, Ay, E, Ty, T, for irreducible representations of T7,).

The irreducible basis (I. 16) for P can be easily obtained from Eq. (I. 17) and the com-
ment following that equation. Namely, the equilibrium position for the tetrahedron
(Eq. (1.15)) is

a
2

0

r=—(ej+ej+ei+e;—el—e;—ei+el—ei—ei—el+e)

= %[(l1>+l2>—|3>—|4>)ex+(ll>—I2>+I3>—I4>)e”+(l1>—l2>—I3>+|4>)e’], 3
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where the first equality follows from Fig. 1 (a is the edge of the cube in Fig. 1), and the:
second is the consequence of the factorisation (I. 3) of the twelve-dimensional configuration
space .4 of the cluster into the simple product of the four-dimensional positional space IT
and a vector space ¥, spanned on the basis |15, 12>, 13D, 14> and €%, €, &, respectively.
This notation has been defined by Eq. (I 2). An irreducible basis |44} for the positional
representation P in I7 is therefore given by

|4;a:> = 7 (1> +12>+3>+14)),
ITyx) = 3 (I +12>—13>—14)),
Toyy = 7 (1D=12>+135>—=14)),
[Tyz) = 3 (11>—12>—13)> +14)). “@

The decomposition (2) includes only unit and vector representation, since the tetrahedron
is a symplex in a three-dimensional space. Accordingly, the basis (4) can be determined
immediately from Eq. (I. 17) and (3), which provide the basis |Aia.y and |Tp4), respec-
tively, without any tedious projection procedure.

The symmetric coordinates for the tetrahedron can be obtained from Eq. (1. 21)
using standard Clebsch-Gordan coefficients for the group 0, isomorphic with Tj. We
take these coefficients from papers [2]. The symmetric coordinates can be written here as.

[ATy) = Y Birli>e" (5)

TABLE I

The symmetric coordixlates for nodes of a regular tetrahedron. The coefficients Bi?ry of Eq. (5) are in units.
of Bary; the latter are given under the headings of each column

4 Ay T
I r T, Ay L T, I Yy
fo === | ¥ > | D 1
bl x ¥y z ar | 7} | e x y z ‘ x l y | z
[ | % D B 1 i 1 1
;B“”' e P e 1/2‘/3.2q/‘*2.3|2\/2 20/3 | 2472 | 2v/2 | 24/2 | 24/2 | 24/2
1x|1 0‘0 1|—1 1 0—1;1|0!-1 -1
y o ]| 1|0 i <t | 21] 1| of-1]| -1 of -
s o | o 1 1 2 0| ~1 1 off -1l —1 0
2 x | 1 0 0 1 -1 1 0 1| -1 0| 1 1
y | o ¢ Ut o =2 1 1= 0| -1 | 1 0| —t
e 0o | o 1| -1 =2 | o 1 1 0 1l -=a 0
1 1 0 0o | —1 1 -1 0 1 1 \ 0 1 2
y | o BUIR: 1| =1 | ~1] 1| of 1] 1 0 1
z o | o 1 [l=1 | =2 ol =1 |l 21 0| —1 1 0
4 x | 1| o o | -1 ] 0| -1 | ~1 ‘ 0| ~i 1
y | o | 1] o |-1 1 1 tifleof, tl—=1fl of 4
z [0 | o 1 1 2 0 14l =2 ol 1 1 0
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(we omit all those indices of Eq. (L 21), which are here irrelevant). The expansion coeffi-
cients B are listed in Table I.

According to a general interpretation given in Section 3 of I, the bases [4,T,7> and
IT2T1y> (v = x, p, z) describe respectively translations and rotations of the whole tetra-
hedron, |T,T,4,a,) is the “breathing mode”, and |TLEy> (» = 6, ¢) and |T,T,y> are
displacements violating the symmetry of the cluster. The bases |T,EQY and |T,Ee> can be
related to a deformation of the cube in Fig. 1 to a parallelepiped with edges parallel with
the axes x, y, z and lengths (a—2by, a—2b,, a +4b,) and (a +2b,, a—2b,, a), respectively,
where by, = b/2 V2~ 3, b, = b/2./2, and b is a measure of the deformation. Similarly,
|T,T,p) can be related to a deformation of the cube to a regular truncate pyramid with
square bases. E.g. for [T,T,x) the bases of the pyramid are parallel to the yz-plane, their
edges are a+2b.(b, = b/2,/2), and the height is a.

3. The symmetric coordinates for a cube

The symmetry group for a cube (nodes 1, ..., 8 in Fig. 1) is Oy. Each stability group G,
is isomorphic with Cj,, and the stability group for the cluster is unity, and hence the con-
stituent set X,(0,) is isomorphic with O,. The positional representation is now

P=4,04,&T,0T,, (6)

where T, is the vector representation V. The corresponding bases {44 for A = A, and
T, can be found easily in a way demonstrated in the previous Section. The remaining
bases have been determined by a projection procedure using a method proposed by Sakata
[3]1 (we give an outline of this method in Appendix A). The irreducible basis

142y = Y cialiy M
for the cube is given in Table II.

TABLE 1L

An irreducible basis |44} of the positional representation for the nodes of a cube. The coefficients ey
are given in units of 1/24/2

4 Ay Az, Ty Tz
] ot | S =

A aig 2y x l y z x ‘ y l z
1| 1 1 & =T 1 1 1 ‘ 1
20 1 1 ' -1 | -1 1 -1 4 -
SIS 1 -1 1 -1 -1 1 -1
4 1 1 =1 =il 1 -1 —1 1
5 1 -1 -1 —~1 -1 1 1 1
6 1 -1 -1 | 1 1 -1 -1
7 1 ~1 { —1 1 -1 ‘ 1 =il
8 1 -1 1 1 | = ~1 -1 1
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The symmetric coordinates for the cube can be labelled by means of Eq. (5), without
any additional repetition indices. The numerical values of the coefficients B are listed in
Table IIT (we have assumed that the Clebsch-Gordan coefficients for the group O, are
equal to those of O after suppression of parity indices g and u).

In an interpretation of the symmetric coordinates |AT'y) it is convenient to consider
the cube as two mutually interplaced regular tetrahedrons

=234, 1,=(67S8), (8)

each transforming into the other under inversion. It is easy to check that the part 4,, @ T,
of the positional representation (6) of the cube corresponds to positional representations (2),
i.e. A, ® T,, of tetrahedrons t, and ¢,. Indeed, the coefficients ¢, from Table II for
i =1..., 4 are equal, apart from a constant factor, to the corresponding coefficients deter-
mined by Eq. (4) for the tetrahedron #;, and the -coefficients for i = 5, ..., 8 determine
evidently the positional representation for t,. Moreover, the positional representation
(6) for the cube can be written in a form

P = (AlgEI') Tlu)®A2u®(A1g®T1u)> (9)

allowing the introduction of the associated bases |A1> by means of the relation

6 A A, 4
|AA) = [/1 Py ;1:| [AA) (10)
(cf. paper [4] for details related to the associated bases). Accordingly, the part (45, @ T1,)
of the positional representation (9) can be related to the same displacements for both
tetrahedrons (e.g. translations or rotations in the same direction), and the remaining part
Ay, ® (4,, ® Ty,) corresponds to mutually opposite displacements of nodes of each
tetrahedron.

4. The reduction in symmetry

Now we consider a classification of symmetric coordinates for a cube and a tetra-
hedron, adapted to a chain of subgroups G, = G. We restrict the discussion to a few non-
-trivial cases, when the cluster decomposes into simple subclusters.

We begin with the chain I; — Cj,. Let

= (N2 ) @+ +eD), P =YD (—F+e), =) (T +I+e), (1)

then i* can be chosen as the trigonal axis, and #* lies in a mirror plane. The tetrahedron
(1234) (Fig. 1) decomposes in the subgroup Cj, into two simple clusters: (1) and (234).
For the cluster (1) the stability group Gy = G(1) = Cj, so the constituent set 2(1) is iso-
morphic with the quotient C;,/C;, and hence is the trivial group, whereas for the cluster
(234) each G,, i = 2, 3, 4, is isomorphic with C,, and G (234) = C; so the constituent set



421

is isomorphic with Cj,. The equilibrium positions #°(p) for both clusters are

r’(1) = a /37, (12)
rO(234) = [(IN2- 3) (12> +13) =2l +(1/4/2) (— 125 +13))®
+(UV3 12> +13) +14))i] (13)

(we assume for simplicity, that the equilibrium positions of the nodes of the cube in Fig. 1
are not changed under the reduction in symmetry; an eventual change can be accounted
for by replacing a by a’ for the coefficients related to i%). Usmg these formulas, we can
easily obtain the irreducible bases |pAA) for the positional representations for each cluster
as

I(D4sa,> = |1y, (14)
@39)41a1) = (1//3) (12)+[3) +14Y),
(234)Exy = (1IN2-3) (12> +13>—214)),
[34)Ey) = (1/y2) (= 12> +13)). (15)

Eqs (14) and (15) are an example of the geometric reduction (the case (iii) of Secton 4
of I). In order to determine the bases of the positional representation in the formal reduc-
tion scheme (the case (i) one has to estabhsh the decomposition coefficients a3t
(cf. Eq. (1. 25)). Assuming that

ainam =1 (16)

141

and that appropriate coefficients for A, = T, are determined by Eq. (11) (note that T, is
here the vector representation ¥, and (11) is its basis), one gets

[1cdsa1) = (1/2) (1> + 2>+ 13> + [4),
ITy418,) = (1/2 /3) GIty = 12>~ 3> — [4),

IT,Exy = (IN2 -3 (120 +[3)—214),

ITEpY = (1\/2) (=12 +13)). 17

Now it is easy to evaluate the coefficients A39(A) for the transformation (1. 26) between
the geometric and formal basis (Egs. (14)-(15), and Eq. (17), respectively). This transfor-
mation is

[(DAa> = (1/2) [4i.41a;> +(\/3/2) T,Aa:),
[(230)4,a,) = (\/3/2) |43c41a1>—(1/2) | T, A a.),
I(234)Ex) = |T,Ex), [(234)Ey) = |T,Ep). (18
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Egs. (18) can be interpreted in terms of an “interference” of “waves”. E.g., a result of an
““interference” of basis functions |4,.4,a,> and [T, 4,a,) of the positional representation
for a tetrahedron, with “amplitudes” and “phases” defined by the first of Egs. (18), is an
“annihilation” of nodes 2, 3, 4, so that there remains only the node 1. In the other three
cases the node 1 is annihilated, and three independent “‘superpositions” of the nodes 2,
3,4 are realized.

TABLE 1V

Classification schemes of formal and geometric reduction for a few chains Oy, - G. Each of the four columns
related to the formal reduction presents the decomposition of an appropriate representation A, occurring
in Eq. (6) into irreducible representations of the group G. The column p contains labels of nodes belonging
to a given simple cluster, G; is the stability group of an i-th node of the cluster, and P, — the corresponding
positional representation. The representations constituting the vector part ¥ of the positional representa-

tion P, are underlined. For a geometric identification of a particular group cf. Appendix B

The formal reduction The geometric reduction
G = = —
Alg Azy Ty T2g p Gi ‘PP
= . | g,
Ty A | As T, | = ‘ 1234
| 5678 } Co | 48T
Cap A, B, | A,®F B,®E 1647
; 8352 Cs | 4®B.QF
Dy(a A A A, DB, DB A, DB, DB 1234
2() 1 1 2@ 1@ 2 2@ 1@ 2 | 5678 } Cl A1®.i2®£}®£.2
Dyb) | A1 | 42 A, ®B,®B, A, ®B,®B, | 1458 c 4,04, ©B,®B,
6732 g A, @A, DB @B
Dy Asg | A2y Az @E, A1, BE, 15 C"" ' Alg@éﬂ
i ‘ 234678 ‘ oA A1g® A2, DE,DE,

All cases of reduction O, — G analyzed in this work are listed in Table IV. This
Table provides a detailed classification of irreducible bases for the positional space for
nodes of a cube in both formal and geometric reduction schemes. It follows from an in-
spection of Table IV that

_ JCyy for G = Dyy, p= (1%5)
G(p) = {Cl for other cases (2

(cf. Eq. (1. 9)), so that the constituent sets X,(G) are isomorphic with the corresponding
groups G, with the exception of the linear cluster p = (15), for which

2(15)(D3d) ~ D3d/C3v ~ Z, 20

that is, the constituent set X5, is isomorphic with the group X, of permutations of two
elements.
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A determination of bases for the formal reduction scheme is reduced to a careful

determination of the decomposition coefficients

Aclc

ays’e for each of the subgroups G. The

coefficients related to cases listed in Table IV are compiled in Appendix B.

TABLE V

Trreducible bases for clusters from Table IV. The bases for 4 = A4; are omitted — they are determined by

Eq. (1.16). The exchange of indices is determined by the sequence of nodes in a cluster (e.g

. “8352 as 1647

after the exchange of indices” means that 1 should be substituted by 8, 6 by 3, etc). Symbols | Vx>, |V,
and |Vz) denote appropriate vector components of the positional representation, associated with the
Cartesian system for the corresponding group G according to definitions given in Appendix B

G i p 4 2 lpAZy
Ty 1234 T, x ‘ A2 +12>—13>~4>) = |Vx)>
y | A2~ 125+ 13>—14>) = [Vy>
z A2 —=12>= 3>+ [4>) = V2>
5678 as 1234 after the exchange of indices
Cay ‘ 1647 | E x A2 = 16>~ 4> +T)) = Vx>
i | y A/ 16>—14>—=17>) = (V>
B, b, | /21— 16>+ 14>—17>)
8352 as 1467 after the exchange of indices
Dy@ | 1234 A, ay | as |Toz) for this cluster in 73
By by as |T>x) for this cluster in Ty
‘ B, b, as |T>y> for this cluster in Ty
5678 as 1234 after the exchange of indices
D,(b) 1458 A2 a, A2+ 14> —155—18)) = |Vz>
B b /21— 4> 155+ 18>) = Vx>
| ‘ B, b, (/DAL 4>+ 15>~ [8))
| 6732 Az a» A2)A6>+17>— 13>~ |2>) = [Vz>
: By, b aie>—17>—13>+12)>
» | Bx b A2DU>—1T>+13>—12)) = |Vp>
Daa ‘ 15 | Aoy a2y /21> —15)) = V2>
| 234678 Az azy (V2 3)(=12>=13>— 4>+ 16>+ 7>+ 18D) = | V2>
Ey x| (1/2)(125~ 3>~ 165+173) = [Vx>
y A2/ 32>+ 13> ~214>— 16> — | 7> +2|8) = |V¥)
E, x A/24/3)12>+ 13>~ 24>+ |65 + [T>—218D)
y A/2)(— 12> +13>—16>+(T)

Bases in the geometric reduction scheme, i.e. irreducible bases for subclusters p,
associated with a group G, are listed in Table V. The equilibrium positions of clusters listed
in Table IV are given by

%p), = < a(2{Vy)e +|Vz)e?)

(Ea(Vx)e™+|Vyde +[Vz)e)

G = Ty, Cypy Dy(a),
G = D,(b), p = 1458,

for G = D,(b), p = 6732,

a ﬁ_]Vz)e’ ' G = Dy, p = 15,

for

a(\J2 |Vxye*+|Vzye?)  for

for

La J2(VxDe*+Vyd@+|Vade?) for G = Dy, p = 234678,  (21)
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where the sign “—"" in the first line corresponds to p = 5678 and 8352, and |Vx), |Vy),
|Vz) are the vector components of an appropriate positional representation, defined by
Tables IV and V, where the Cartesian axes x, ¥, z are associated with the symmetry group G
of the cluster according to the definitions of Appendix B. Note that for G = C,, both
1647 and 8352 are plane clusters perpendicular to the z-axis. Nevertheless, the positional
representation contains the vector component |Vz) = [4,a,), associated with a translation
of the plane of a cluster along the z-axis (cf. comments following Eq. (I. 15)).

TABLE VI

Matrix elements AﬁC(/l) of transformations between the geometric and formal reduction schemes for the
cases listed in Table IV. The matrices, their rows, and columns are labelled by 4, A, and p, respectively

Op — Ty
A, f 1234 5678 7 ‘ 1234 5678
Ay, 1//2 1)y/2 Ty 1/4/2 ~1/4/2
Az, 1/4/2 ~1/4/2 Tay, 14/2 1/4/2
Op - Cuy: )
A, ‘ 1647 8352 B, i 1647 8352 E | 1647 8352
Asg 1/4/2 1/4/2 Azy V2 —1/4/2 Tiy 1/4/2 1/4/2
Ty, 12  —1h/2 Ty 1/4/2 14/2 Bay 12 —14/2

Oy, — D,(¢): The matrix 4(4,), and each of the three matrices A(4,), A(By), A(B;) coincides with 4(4,),
and A(T:), respectively, for the case Op — T .

Oy, — Da(b):
Ay ‘ 1458 6732 A, ’ 1458 6732 B, (1458 6732 B, 11458 6732
Ay [14/2 1a/2 Asy |12 =1]4/2 Tiy 1 0 Tiy I 0 1
Tay |14/2 ~14/2 Ty, (182 14/2 Tsy 0 1 iy 1 0
Oh—)Dsd:
Ay ‘ 15 234678 Azy 15 234678 E, ‘ 234678 E, ‘ 234678
cdig | 12 \/3/2 Azg | 1]2 —4/3/2 Ty A Tou | 1
Ty | V32 —1)2 Tw | 232 12 ‘ |

The transformation matrices between bases in the geometric and formal reduction
schemes (cf. Eq. (I. 26)) are given in Table VI. This Table demonstrates also the general
structure of the transformation matrices A(A).

The bases related to a reduction in symmetry strongly depend on an orientation of
elements of a subgroup G of 0,. E.g. two isomorphic subgroups D,(a) and D,(b) lead to
essentially different bases: the basis in the case of D,(a) is determined by three-dimensional
clusters p = 1234 and 5678, related to the intermediate subgroup 7} in the chain Oy — T;
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— D,(a) where the chain T; — D,(a) is associated only with the formal reduction, whereas
the basis in the case of D,(b) is associated with two plane clusters p = 1458 and 6732,
situated on the plane xz, and yz, respectively (in the system of coordinates for the group

D (b)).

3. Final remarks and conclusions

We have presented in this paper an application of a general method for the determina-
tion of the symmetric coordinates for point clusters invariant under a point group to the
non-trivial cases of nodes of a regular tetrahedron and of a cube. We have shown how
the factorisation of the corresponding mechanical representation into the positional and
vector part allows one to simplify the projection procedure by using standard Clebsch—
-Gordan coefficients. The determination of an irreducible basis for the positional repre-.
sentation can be further simplified by exploiting the information about the equilibrium
position of the cluster. It allows us to obtain immediately, without any tedious projection,
the bases related to the vectorial part of the positional representation. Consequently,
bases for the positional representation for the regular tetrahedron, as well as for all sub-
clusters listed in Table IV, with an exception of the last one, can be obtained in a very
simple way (when only one component is unknown, e.g. [B,b,> for the case G = D,(b),
p = 1458 of Table IV, we can determine it from the orthogonality conditions: (BZ by|d,a; )
(Bybs|A2a:) = {Byb,|B1b;) = 0 — cf. Table V).

We note that the mechanical representation M for a cube decomposes into irreducible
representations I' as

M = AlgG‘)Azu@Eg@Eu@Tlg®2T1u®2T25®TZu’ (22)
hence a simple classification based only on I" and y is not complete for the cases I' = T,
and T,,. Whereas the two representations I' = T, can be easily distinguished by relating
one of them to translations of the whole cube, the resolution of two identical representa-
tions T}, is not so obvious. The scheme proposed in this paper provides a natural label
distinguishing these representations, namely the representation A, which is related to the

equilibrium position of the cluster. Consequently, the proposed scheme is complete for
the cases considered here.

APPENDIX A
A brief outline of the projection method of Sakata [3]

Let P be a representation of a compact group G, with the decomposition

P =Y n(P, N)A (AD
A

into irreducible representations A of this group. According to a method proposed by
Sakata [3], an irreducible basis [PAAY, t = 1,2, ...,n(P, A) is given, with an accuracy



426

to a A-independent normalisation, by columns of the matrix
Fe) = Y. P@AP(e), (A2)
geG

where P(g) is the matrix of the representation P for an clement ge G, A is an arbitrary
square matrix of the order [P], and P@(g) is a quasidiagonal matrix composed from
standard irreducible matrices D*(g) according to the decomposition (A1), with a fixed
sequence of A’s.

The method of Sakata accounts for all conditions imposed by the symmetry of the
group G as well as by the assumed conventions for matrix elements D7, (g), and the whole
remaining arbitrariness (a choice of phases, normalisation, a choice of a system of repeti-
tion indices ¢) can be removed only way of some extra physical or mathematical conditions.
In particular, this method automatically assures the coherence of any two states |A4>
and |4A'> belonging to the same representation A, whereas traditional methods of pro-
jection (see e.g. Lyubarskii [5], § 26) require not only the operators which project on
| A but also step operators which transform A1) into [A4"D.

For cases when the group manifold G can be decomposed into left cosets with respect
to a subgroup H as

161/}
G= U gf, (A3)
x=1
the matrix F(G) is given, with an accuracy to an unimportant multiplicative constant, by
. I61/\H] . T
F(G) = 21 P(g)F(H)P(g.)", (A9
=

where F(H) should be evaluated using Eq. (A2) with the summation limited to the sub-
group H. The formula (A4) provides a considerable simplification of calculations, e.g.
using the chain

0,-0->T—-D,~>Cy (A5)
one can restrict the summation in (A2) from 48 to 8 elements, namely to E, C,;, C,, and
C,, (the elements of D,), C3; and C3 ! (left coset representatives for D, in T, C,, (that
for Tin 0), and I (that for O in O,). The method can be easily demonstrated for the case
of positional representation of the regular tetrahedron (2). It involves only the summation
over elements quoted in Eq. (1), and leads also to the irreducible basis (4).

APPENDIX B
The formal reduction for selected chains Oy - G
We give here the irreducible bases
IL.Tyy = Y a5l ey (BD)
Yo
assumed in this paper for subgroups G of the group O,, listed in Table 1V, and for represen-

tations I', appearing in Eq. (6). I, and I' denote the irreducible representations of O
and G, respectively, and y, and y — the corresponding standard basis functions.
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For the subgroup T, we choose the cartesian system e”, €’, ¢ (Fig. 1). Then
lAlgA1a1> = lAlgalg>: |A2uA1a1> = IAZua2u>’
ITluTZ’y> = lTluY>a lTZgTZY> = ITZgy>’ Y= X, Y, 2. (Bz)

We choose the four-fold axis of the subgroup C,, to be parallel fo e°. Then we have
(in the same system e*, €, &)

|A1gA1“1> = |A1ga1g>a [A2,Byb2) = |4,,02.0»
Ty, Asas) = T2, [T2gBob2y = 11242,
IToExy = [Ty, |TogBxd = |Tygp,
ITWEY> = Ty,  [To,Ey) = |Tpx). (B3)

The group O, has two kinds of geometrically unequivalent subgroups D,. The sub-
group D,(a) is a normal subgroup of O,, and its two-fold axes are parallel to e”, ¢, and &°.
We have

lAlgA1a1> . iAlga1g>a |A2uA1a1> = |A2ua2u‘>’

|Ty,Bib> = |T1 x>, |TZgB1b1> = ,ng)’>,
|Ty.B2by> = |T.y>, Ingsz2> = szgx>,
| Ty, Aza,) = |Ty,z), IngAzaz> = lT292>' (B4)y

As the subgroup D,(b), we choose the one having horizontal two-fold axes rotated
with respect to D,(a) through the angle #/4 around €°. It is therefore convenient to choose
in this case the cartesian system

= (1/\/2) (e"+e&), J = (1/\/5) (—e*+¢&), j=¢. (B5)
Then
’A19A1a1> o ‘Algalg>n |AZMA2a2> = 'A2ua2u>:

ITyudra5> = [Tz, [Tyedia:) = [Tz,
IT1uB1b:> = (1/y2) (Tx)> +IT1y)),
| T1uB2b2> = (12 (Tix>—~1T1)),
IT24B1b:> = (1V2) (Togx> = Toe0)),
I T26B2b2) = (12 (Togx +1T209)). (B6)

Note that the subgroups D,(a) and D,(b), despite their isomorphism, have different
decompositions of the same octahedral representation T, as a consequence of their geom-
etric unequivalence.
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We relate the subgroup D;, to the cartesian system

=112 (€—2), K =(N2:3)(+&=2¢), K =(1[/I)(@++&), (BT)

so that the trigonal axis coincides with &, and k™ is a two-fold axis. Then the decomposi-
tion coefficients af;’“ are given by Table A 17 of Griffith [6] for the chain O — D,. :
A comparison of the system (B7) with that for the subgroup C;, (cf. Eq. (11)) is given by

=~ =i, K=i (B8)
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