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CLASSIFICATION OF SYMMETRIC COORDINATES FOR POINT
CLUSTERS. I. THE METHOD*

By T. LuLEx
Institute of Physics, A. Mickiewicz University, Poznan**
( Received June 22, 1979)

A group-theoretical method for the classification and determination of sets of symmetric
coordinates for a cluster of points, invariant in its equilibrium position under a point group,
is proposed. This method relies on describing the configuration space for the cluster as
a simple product of a “positional space” related to labels of members of the cluster, and
a three-dimensional space of *“free” vectors. An internal structure of the positional space
and a reduction of the symmetry have been investigated.

1. Introduction

Determination of symmetric coordinates of clusters consisting of atoms or ions, whose
equilibrium distribution possesses the symmetry of a point group G, is the starting point
of many quantum-mechanical calculations in chemistry and solid state theory, since such
coordinates are related to the normal modes, which determine the dynamics of a physical
system in the harmonic approximation, Methods for the determination of these coordi-
nates base themselves essentially on a standard group-theoretical projection procedure,
realizing a decomposition of the mechanical representation into irreducible representa-
tions of the group G [1-3). This procedure is usually treated as a “black box”, transforming
the set of cartesian coordinates of the nodes of a cluster into appropriate linear combinations
symmetrised under the group G, without any deeper insight into the internal structure
of the mechanical representation. On the other hand, such a structure is naturally imposed
by an obvious statement that any operation of the group G leads to a transformation of
displacements of nodes from their equilibrium positions, accompanied by a permutation
of these nodes. Consequently, the carrier space of the mechanical representation can be
treated as a simple product of a three-dimensional “free” vector space by a linear space
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associated with the distribution of equilibrium positions of the nodes of the cluster (see
e.g. Lax [3], Chapter 5).

We proceed in this paper to give a group-theoretical analysis of an internal structure
of the mechanical representation M for a point cluster symmetric under a point group G,
and to propose a method for the classification and determination of symmetric coordinates.
This method will be demonstrated in part IT for cases of the nodes of a cube and a regular
tetrahedron.

2. A structure of the positional representation

Let ¢, « =x,y,2; i=1,2,..., N be a cartesian basis for the configuration space
M for a cluster consisting of N points, and let G be the geometrical symmetry group for
this cluster. The transformation of the basis ef under ge G is given by

M(g)e; = 3. Voul)el,s 1)

where V,,,(g) are matrix elements of the vector representation ¥ of the group G in a three-
-dimensional real cartesian basis €, and D; = p(g) is the label of the position, occupied
after the transformation g by a node from the position 7. The set of operators M(g) forms
the mechanical representation M.

Putting
e = |ide’, @)
we express the configuration space .# as a simple product
M=0& 7, 3

where the space IT and 7~ is spanned over the basis |i) and €% respectively. The scalar
products in II, ¥~ are given respectively by

Gy = 6y, €€ =6, )

The group G operates in the space ¥~ according to the vector representation V, whereas
its action in the space IT is determined by the permutations

82w e WY
O-(g)=<l71 P2 ... PN>. )

Introducing operators P(g) defined by the relation
P(g) iy = Ip», (6)

we obtain a representation P of the group G in the space I1. The representation P in the
space II, referred hereafter to as the positional representation, is evidently isomorphic
with the permutation representation (5). In this Chapter we give an analysis of a general
structure of the positional representation.

The representation P is, in general, reducible. First of all, a set of N nodes consftituting
a cluster can be decomposed into transitive blocks (“simple clusters™), i.e. such subsets
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that for any pair (i, i") belonging to a block there exists such g € G that p,(g) = i’. Cor-
respondingly, the space II decomposes into invariant subspaces 11, where p is the label
of the simple cluster.

Let the cluster considered hereafter be simple. Let G; C G be the stability group for
the i-th node, i.e. the set of all elements which leave the position of this node unchanged.
1t follows from simple geometrical considerations that for N > 1 the only accessible
stability groups are group C,, and (or) their subgroups embedded in G. There exists a one-
-to-one mapping between the nodes of the simple cluster, and the left cosets of the group
G with respect to the stability group G, given by the decomposition

N
G= v gG,. ¢
i=1
The mapping given by Eq. (7) allows one to use the cosets g;G (or their representatives g;)

as labels of the nodes of the cluster. It follows that

N = |Gl/IG,], ®

where |G| is the order of the group G, i.c. that the number of nodes for a simple cluster
has to be a divisor of the order of its symmetry group. When N = |G|, the cluster is termed
to have a general position, and for N < |G| — several special positions. It is also evident
that the group G(p) of the stability of the whole cluster, defined by

N

6(p) = N G ©
is the maximal invariant subgroup of the group G, contained in subgroup G, and the set
Z,(G) of different permutations o(g), called the constituent set of G on a cluster p, is
isomorphic with the quotient group G/G(p). It follows that the positional representation
P of the group G is a true representation of the constituent set 2,(G).

It follows from Eq. (7) that the positional representation P is essentially a transitive
permutation representation, i.e. a representation of the group G by permutations of its
left cosets with respect to a subgroup G; (cf. Hall [4], § 5.3).

Let

P =Y n(P, A)A (10)
A
be the decomposition of P into irreducible representations A of the group G. We proceed
to discuss two general features of this decomposition.

Firstly, the representation P can be extended to the group 2y of all permutations
of N nodes of the cluster (by an ordinary extension of the definitions (5) and (6) to arbitrary
permutations), and can be therefore decomposed as

P={N}@®{N-1,1}, (11)

where {N} and {N—1, 1} denote the Young diagrams for appropriate irreducible representa-
tions of the group Zy. Eq. (11) follows immediately from a comparison of appropriate



410

characters, since the character y"(s) is given, according to Egs. (5) and (6), by

XP(G) [ vla ge ZNa (12)
whereas

1) =1; N N) =y, 1, (13)

where vy is the number of one-element cycles of the permutation o (i.e. the number of
nodes, which are invariant under o). Under the restriction Zy — X(G), the representation
{NV} becomes the unit representation A4, of the group G, and {N—1, 1}is,in general, reduc-
ible and requires further decomposition. It is worth noting that the latter decomposition
does not involve any unit representation since

i 1 . 1
n(P, 4;) = "G_i h = @Z |G| = EN,GII =1, (14)

g6G

so that {N} = A, is the only unit representation occurring in P.

Secondly, the positional representation P (or, more exactly, its member {N—1, 1})
encloses, in cases of three-dimensional clusters, the vector representation ¥ of the group G,
and in cases of plane (linear) clusters — the appropriate component of ¥, related to the
plane (axis) of the cluster. In order to prove this statement, we express the equilibrium
position for a cluster as

=Y g€, og.ell (1%)
o

Since #° is, by definition, invariant under the group G, and the vectors e* span the vector
representation ¥ for this group, it follows that, in general, the elements @, also have to
span the vector representation in the space I1. For exceptional cases when the cluster is
placed in a plane (line), i.e. when ¢” span a two (one)-dimensional space, the elements g,
have to span appropriate two (one)-dimensional space transforming under the group G like
the plane (line) of the cluster. Moreover, when the point group G leaves an axis invariant
(i.e. any of groups C,, and their subgroups), then the positional representation of a plane
cluster can also enclose that component of the vector representation, which is perpendicular
to the plane of the cluster. This component coincides with {N}.

An irreducible basis for the space I7, related to the decomposition (10), can be written
in a form

N
lpAt2y = ¥ chalid,  1=1,2,..,n(P, A), (16)
i=1
where p labels simple clusters, A is a basis function for the representation A, and ¢ — the
repetition index distinguishing identical A’s in P. For A = A, we have
Clyay = N2, 17

since for a simple cluster the unit representation is associated with the symmetrical repre-
sentation {N} of the group Zy. The coefficients ¢, for the vector component of the posi-
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tional representation can be easily determined from Eq. (15) assuming that the equilibrium
position r° of the cluster is known (cf. examples in Part II). The remaining coefficients of
Eq. (16) should be determined by a projection procedure.

3. The classification scheme

According to formula (3), the mechanical representation M of the group G for a simple
cluster p is a simple product
M=PQ®V. (18)

The decomposition of P into irreducible representations A is given by Eq. (10), and the
corresponding decomposition for ¥ can be formally written in a similar form

V=Y nV, )4, (19)

(actually, we have n(V,4) <1 for N > ). Irreducible representations enclosed in the
mechanical representation are determined by the Clebsch-Gordan series
A®4 =Y e(AAD)T. 20)
r
The formulas (18), (10), (19), and (20) provide a complete group-theoretical classification
scheme of symmetric coordinates for a given simple cluster.
The unit vectors for the symmetric coordinates can be expressed in this scheme as

o, At ad, Twyy = >[4 4 T W40y 14ass,
A 6 9y
A

t=1,2..,0P,4); d=1,2.,00V,4); w=1,2 .., cAdD), (1)

where the symbol in rectangular brackets is a Clebsch-Gordan coefficient associated with
the series (20), the kets |pAtA) are given by Eq. (16), and |4d53’s — by a similar formula
for the vector representation V. Determination of symmetric coordinates is thus reduced
essentially to evaluation of the decomposition coefficients of Eq. (16), since the remaining
coefficients are known in literature (e.g. Griffith [5]). The classification proposed in Eq. (21)
is more complete than the ordinary one based only on I" and y, since it provides a sensible
label for repeated representations (cf. Part 1D).

The position of nodes of the cluster after a deviation from their equilibrium position
¥° (BEq. (15)) can be written in a form

r = ¥°+ Y b(p, At, Ad, Twy) |p, At, Ad, Twy), (22)

where the sum runs over p, At, Ad, ['wy, and the coefficients b are the symmetric coordinates.

Some symmetric coordinates associated with the vectors (21) allow for a general
geometrical interpretation, independent of a particular cluster. The three symmetric coordi-
nates related to A = A4; correspond, by virtue of Eqs. (14), (17), and (22), to the three-
-dimensional translations of the whole cluster. Similarly, we can give an interpretation
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to coordinates (AAT) related to the vector constituent ¥ of the positional representation P:
since

VRV = 4,0V &V, (23)

where V@ is the traceless part of the symmetric square of the vector representation, and
V" is the pseudo-vector representation, it follows that for cases when V'is irreducible in the
group G (it occurs for those groups which have no distinguished n-fold axis for n > 2, i.e.
for tetrahedral, octahedral, and icosahedral symmetry), the set (A4I') = (V'VA,) describes
displacements preserving the shape of the cluster, sometimes called “the breathing mode”,
and the set (VVV’) describes rotations of the whole cluster. The remaining sets are related
to non-trivial displacements of the cluster. The breathing mode, as well as rotations of the
whole cluster, can be obviously determined also for grdups G with a distinguished axis;
these coordinates are some linear combinations of the coordinates (AAT') resulting from
the vector part of the positional representation.

4. A reduction of symmetry

Now we proceed to discuss the classification of symmetric coordinates symmetrised
with respect to a chain of subgroups G, = G, which can be physically related to a perturba-
tion causing a descent in symmetry from G, to G. We consider three naturally arising
reduction schemes.

(i) A formal reduction for the resultant representation I'. The symmetrized basis
for the mechanical representation is given here by the formula

lpcﬁ Actc’ ACdC9 FCWC’ FU’)}> = Z a;:zclp(ﬁ Actu Acdc’ chcyc>?

Yo
p=1,2,..,n(, ), (24)

where g is a standard decomposition coefficient for the restriction I'; —» I'.
(i) A formal reduction for the positional representation. Here, we reduce in the first
step the positional representations A, to 4 according to a formula

Pt ATy = 3 alripeddtedes 2%
Ao

repeat the same procedure for the components 4., and in the next step form the desired
basis |p., At AB, 4.d,4v, I'wy) according to Eq. (21), with |pAAY and |4d6) substituted
by [pAct.ABAY and |4.d.405), respectively.

(iii) A geometric reduction. We can take into account the fact that a cluster p,, which
is simple with respect to the group G, ceases, in general, to be simple under a subgroup G.
It can be decomposed into clusters p, each of them being simple withrespect to G. According-
ly, the basis for the positional representation can be written as |p.pAtA). This basis can
be expressed in terms of the basis (25) as

pepAtAy = Y. AL'(4, p) |pALATAY, (26)

Actey
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where the coefficients A;,‘;‘;’(A, p.) are independent of A and form, for each (4,p,)
a unitary matrix with rows and columns labelled by (A..5) and (pt) respectively. The
basis for symmetric coordinates can in this case be written as

[p.p, At, A, d AT, Twy)

= A A T w
= Z Al 4, pc)ajﬁicajggc |:/1 5 ] IpeAgt ey |4.d.6,,
Actcv,ich,606
t=12,..,nP,4); d,=12,..,nV,A4);
v=1,2,..,n(d,4); w=1,2,..,c(A4), 27N

where P stands for the positional representation for the cluster P, which is simple under
the subgroup G.
The transformation between bases (i) and (i) is given by

1o, Aote, A, Towe, Twyy = 3 [A A5, A A0, Wl wlv] |p.Act.AB, 4.d.Av, Twyy,  (28)

vow

where [A,47, 4.4, Wl swl'v] is a standard reduction coefficient, defined in our work [6].
The basis (i) can be expressed by the basis (i) in terms of the appropriate matrix 4(4, p,)
defined by Eq. (26). It can be written shortly as L@ED|@E)Y = A.

5. Final remarks and conclusions

We have proposed in this paper a group-theoretical method for the classification
and determination of symmetric coordinates for point clusters. The key observation exploit-
ed here is a possibility of expressing the mechanical representation M (cf. Eq. (1)) for
a cluster as a product of the positional representation P, related to permutations of nodes
of the cluster (Egs. (2)—(6)), by the vector representation ¥ (cf. Eq. (18)). We have discussed
some general properties of the positional representation P and found that it contains exactly
one unit representation of the symmetry group G of the cluster, and it moreover includes
the vector representation ¥ for this group (or its appropriate component for plane or linear
clusters).

A general classification scheme for symmetric coordinates, and, at the same time,
a receipt for their determination, is provided by Eq. (21). This scheme is more complete
than that usually quoted in literature, based only on the resultant irreducible representa-
tion T', since the former allows one sometimes to label identical Is by different irreducible
representations A related to the equilibrium position of the cluster. Calculations for the
proposed scheme are appreciably simplified, since the use of standard Clebsch-Gordan
coefficients allows one to reduce the projection procedure from a 3N-dimensional configura-
tion space .# to N-dimensional positional space I1. Moreover, the above mentioned general
properties of the positional representation allow one to restrict a necessary projection to
an N-4-dimensional subspace.
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We have also discussed (Section 4) some modifications of this classification scheme
under a reduction of the symmetry of the cluster. We proposed three natural schemes.
for the corresponding chain of subgroups, and presented appropriate transformations
between these schemes.

The general methods described here will be demonstrated in Part 11 for the case of
nodes of a regular tetrahedron and a cube.

The Author wishes to thank Dr. R. Chatterjee from the University of Calgary
for fruitful discussions which gave an origin for the subject of this paper.
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