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A CPA CALCULATION FOR THE 11-LAYERED THIN FILM*
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Institute of Physics, Technical University of Warsaw**
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The local density of electronic states has been calculated for a film consisting of 11 atom-
ic layers. The standard CPA method has been extended to systems finite in one direction.
The tight-binding one band model is used. Both surface and internal density of states are
presented as functions of certain physical parameters.

1. Introduction

The problem of determining the density of states function is one of the most funda-
mental in solid state physics. For bulk materials it has been elaborated rather well, espe-
cially for pure crystallographic samples. Less progress has been made for alloys and amor-
phous media although in the last ten years the situation has changed drastically.

Similar problems occur also in thin film physics and its close relative — surface physics.
The lack of translational symmetry in the direction perpendicular to the surface essentially
complicates theoretical considerations. As a consequence they must have a mainly qualita-
tive character. Thin film alloys represent even more difficuit objects for theoretical treat-
ment., Small wonder that only a few papers are devoted to their theoretical aspects.

In this paper we present a method based on the Green function technique, applicable
to both pure and alloyed films. The main attention is focussed on the properties of the
density of states function. For alloys we extend the conventional CPA method in its sim-
plest version. Apart from the so called natural defect (the existence of the surfaces alone)
we admit some differences in comparison with the interior of the film by introducing the
surface values of some physical parameters. These differences are assumed to cause
a relatively small change in the coherent potential on the surfaces so that one may truncate
the appropriate Dyson equation at the linear term in the surface perturbation. Within
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this approximation it became possible to obtain exact formulas for the most important
Green functions e.g. their matrix elements in the site representation G,, for the centre
and for the surface layers of the film.

In Section 2 we formulate the physical model and give an outline of the Green function
method suitable for the CPA for electrons. We also give numerical values of some coeffi-
cients characterizing the Green functions in the momentum representation which are
necessary for further considerations.

The third Section is devoted to the calculation of the Green functions for more realistic
situations including the surface changes of the most important physical quantities. These
are expressed by unperturbed Green functions .described in the preceding section and
then integrated over the appropriate Brillouin zone. Some of these functions are presented
at the end of Section 3.

In Section 4 we describe the densities of states for different chemical compositions.
First we show the densities for the pure film and then for alloys with a uniform and non-
uniform (different at the surfaces) distribution of atoms of both kinds. In both cases we
observe some new effects absent in bulk samples, for instance, a redistribution of electrons
between the surface and the bulk of the film. A brief discussion of the numerical results
is given at the end of the paper.

Despite its qualitative and model character this work indicates essential differences
in the behaviour of a film and a bulk sample, which manifest themselves in several subtle
effects not occurring in bulk materials.

2. Model. General description

In order to simplify the theoretical considerations we have restricted ourselves to the
simplest geometrical structure namely to the simple cubic lattice structure with 001 orienta-
tion (the z-axis perpendicular to the surface). The film considered is thus composed of
11 identical atomic planes. We will index them by the Greek letters u, v, ¢ etc. all of
them taking on the values: 1, 2, 3, ..., 11. The position of an atom in one plane will be
denoted by a two-dimensional vector R. Three-dimensional positions will be represented
by the letters: 7,7, 1, m, n.

The reasons for the choice of such a film thickness are of a purely technical nature.
Thicker films involve much more elementary but very tedious calculations. The procedure
is significantly simplified when the number of atomic planes is odd but still it consumes
much time. On the other hand, the properties of thicker films change rather slowly with
increasing thickness. It is well known (see, for example, [1]) that typical surface- and thin
film behaviour is related to very thin slabs consisting of few atomic planes only. Thus our
film seems to be a good representative from this point of view.

The electronic system is described by the hamiltonian

=0 i, 03]

.o
where #; denote the transfer integrals between the i-th and j-th sites. #; has the meaning
of the electron energy on the i-th site which will be hereafter denoted also by E;. The
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operators ¢ and ¢’ have the usual sense. Here we assume the existence of Wannier states
for our system first proven by Rehr and Kohn [2] for semi-infinite samples. The hamil-
tonian (1) is essentially of the one-band type.

Following the similar calculations for bulk crystals we put

e

_ft,if i and j are the nearest neighbours
4700, otherwise (i # j).

The difference between atoms is taken into account via the energies E;. For a two-compo-

nent alloy 4,_.B, we have

E, = {E ., if the i-th site is occupied by an A atom, )

E,, if the i-th site is occupied by a B atom.

In more detailed considerations we should admit the dependence of E; on the distance
from the surface, at least its surface value may differ from its bulk value. This is in fact
built-in into our general theory but in numerical calculations we did not make use of this

possibility.
The Green functions, we will use later, is defined by the equation

where z is an arbitrary complex number. In the matrix form one has

Z (Zanm - Hnm)Gml = 6nl' (5)

Here, H,, = -
If the film has translational symmetry in the xy-plane (a pure system or an averaged
alloy) then Eq. (5) may be partially diagonalized by means of the two-dimensional Fourier

transformation according to the rule

1 z : .
fn =N e_lk'nfuk (“ = H(")): (6)
k

where N denotes the number of atomic sites in one plane xy and k is a two-dimensional
wave vector. The coefficients f,, depend in general on the plane index u. After applying
this formula to Eq. (5) we obtain '

Z (25u¢ am tuq)(k))G(pv(k) = 5uv5 (7)

@

where
2t cos ak.+cos ak,, if p= ¢
tip(k) = 1t ,if lp—gl =1 @®
[O , otherwise

(@ — the lattice constant).
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For the sake of simplicity we abbreviate the expression with two cosines by s
S = 2(cos ak,+cos ak,). ©

This quantity varies from (—4) to (+4); the corresponding two-dimensional band width
is then equal to 8 |¢].

Let us denote the matrices (with respect to plane indices p, v and so on) appearing
in Eq. (7) by 7 and G. In this notation instead of (7) we may write

G(k) = (z—1(k)~ ™. (10)
Here,
(E{+ts, ¢t O h
t s Epdts, ¢, ...,
i) =10 .t o Eats, ...... : @
Sl e s E,+ISJ
Hence,
[y | (3 S =
ta Xy Ty ...y
Gy=10, & ;. By 50 sn : (12)
R S O W s X1
where
X, = E,+ts,—z. (13)

For convenience we will assume |z| to be unity in the energy scale in all further
considerations.

The matrix elements of G(k) may easily be evaluated for moderate values of the film
thickness d. For higher values of d this is also possible but in a form rather useless for
practical purposes. The fact that x, are in general complex drastically limits effective
progress in the whole theory. One is thus forced to make some additional approximations,
just at this stage of considerations. The most natural one consists in putting all the x’s
constant across the film. All the quantities derived within such an approximation will
be distinguished by the index “o”.

All the matrix elements of the Green function G(k) may be expressed in the following
way:

11

1
GOK) = Z K (14)

=1
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where r® are zeros of the determinant
D = det | ; (15)

The coefficients 4;, are determined by simple algebraic manipulations. In the next Section
we will need four functions only: G}, G¥%, G% and G{’),. The coefficients 47, for these
matrix elements are collected in Table 1.

It is due to its simplicity that we were able to proceed with calculations of form (14)
of the unperturbed Green functions much faster than might be suggested by (12).

TABLE 1

——— — BT | .
PN 1952/ ~1.752 ~1.414) ~ 1000 ~0513| 0000|0513 Lo 1414 1732 1932
1 i | | o= i i~ =

a5, —0.011]—0.042]~ 0.083] — 0.125]~0.156 —0.167|—0.156|—0.125| ~0.083 ~0.042 ~0.011
A —0.043| 0.000| 0.118 0.000/—0.161 0.000 0.161 0.000—0.118 0.000/ 0.043
A5, ~0.167| 0.000 ~0.167 0.000~0.167| 0.000—0.167 0.000/—0.167 0.000—0.167
a5 0011 0.042~0.083 0.125-0.156] 0.167~0.156 0.125/0.083| 0.042/—0.011

3. Green functions for films with surface perturbation

Let us now assume that the energy E, and E,, at surface planes differs from that
inside the film by an amount SE. Then we must put

xl = x+5x = xll. (16)‘

At the same time, x, = X3 = ... = x;, = x. The difference éx may include the change
in the electron energy or in the coherent potential or in other parameters. It seems justified
to treat dx as relatively small so that we replace the exact Dyson equation: G = G
+G© - 77 G by its version linear in the perturbation 7/

G(k) = GO +GOk) - - (k). (7
Here G denotes the Green function (12) with x’s chosen in the above manner, and
( ox, 0, 0, ...)
0, 0, 0,
0, 0, o0, ... (18)

3
it
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(two elements different from zero). We have assumed that both surface planes are identical
which is not always true.

In further considerations we will be interested in two matrix elements only Gy,
and G 6. These functions are equal to:

Gy = G(10,)1'*“2535((;(10,)1)2 for IG(10,)11 = IG(10,)1 (19)
and
Go = GOA+26x(G%)?  for  [GY%| = G} 6l (20)
It is easy to see that
11 11
‘ 1 ol 1 \2
(G9)? = E Lt ( ) Q1)
xXxX—r xX—r

=1 =1

and analogically for (G{%)?. The coefficients B are related to coefficients 4 in the following

way:
11
AL
uv
B, = 24, E — (222)
r—r
=1
75 2
B;, = (4,,)". (22b)
Their values are given in Table II.
TABLE 1I
TN A N 3 e G
B \\ |—1.932|—1.732/ — 1.414| —1.000{—0.518] 0.000 0.518] 1.000| 1.414| 1.732} 1.932
.B;,l I—0.019 —0.063|—0.103| —0.109 —0.070‘ 0.000 0.070‘ 0.109| 0.103] 0.063| 0.019
Bt , 0.000, 0.002] 0.007| 0.016] 0.024 0.028 0.024‘ 0.016] 0.007, 0.002| 0.000
Bﬁyﬁ 0.013| 0.000{ 0.010, 0.000; 0.004 0.000/—0.004/ 0.000|—0.010 0.000/ —0.013
E;,s 0.002| 0.000| 0.014, 0.000, 0.026] 0.000; 0.026 0.000] 0.014| 0.000, 0.002

4. Densities of states

The main purpose of this paper is to calculate the density of electronic states g, which
is connected with the Green function G by means of the relation

1
gn(w) = — —Im Gnn(w+i0+)' (23)
T

It has the meaning of the local density of states per atom and holds for both pure systems
and alloys.

For systems with translational symmetry in each direction, g(w) does not depend
on the position ». For thin films it is true with respect to the xy plane. Otherwise one should
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take into account the dependence of g on u. This may be done in our scheme for every
plane separately. However, the differences between internal planes are rather small so that
it is reasonable to restrict the calculations to two extreme planes: the surface and the central
ones. We will thus consider two densities: g, (surface) and g, (centre). The former corre-
sponds to p = 1, the latter to u = 6. '

In order to evaluate any g-function it is necessary to apply the inverse Fourier transfor-
mation which for diagonal matrix elements reduces to the simple summation

Gy = }VZ T e ) 24)
k

Here, G,,(k) depends on k through s, only. Thus the sum over k may be replaced by an
appropriate integral over (say) s. For this purpose we introduce an additional auxiliary
density 4, corresponding to the function s,. In two dimensions for square lattices it resembles
rather well a step function with a narrow peak in the middle (cf. Fig. 1, dotted line). We

hT ‘‘‘‘‘
| MODEL h
A
/’\
;o\
;7\
/ \
Vi \
; \,
/ N
[ - “‘\7'
,/’// \\\s_.]
[ |
A B R S S .
- -5 -4 -3 -2 -1 a 7 2 3 4 5 6 - w/it|

Fig. 1. The two-dimensional density of states 4. Full line — model density, dotted line — real density
corresponding to two cosines

will ignore this peak making thus an analogy with the free electron gas. The more realistic
shape of 2 would drastically complicate numerical calculations. In our model the A-function
is equal to

%‘ > @ E(—4,4),

0, otherwise, ()

hw) = {
being normalized to unity.
Within such an approximation we have

4
G = %_£ Gu(S)ds,  (n = p(m). (26)
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As we have seen, every G,,-function is a sum of terms of the type (x—r)~! or of the
type (x—r)~2. Therefore we need only to integrate these simple fractions. The results are

4
1
ff=% J - ds=1t(n(z+r"—E—-4)—In(z+r"—E+4)),
-3
4
& 1 | 1
"=—1- ———-——d =—l- T — e N
i ’ j(x—"t)z y 8<Z+r’--E—4 z+r’—E+4> @7y
—4

The imaginary part of f*, multiplied by the factor (—1/x), will be further denoted by g" and
that of 7* — by g". It is easy to see that for real E, g° reproduces the step function 4, and
g" is equal to zero. Hence the g-functions play an essential role in alloys, where electronic
energies are described by a complex potential 2.

. h 1 .
Note that for large z, all the f-functions are proportional to —, as desired.
z

According to the results of previous considerations we have the following formulas
for the densities g¢ and g¢:

0=y At = Y AR, (28a)
T T
0 =% Alg" = > |AdAT, (28b)
T T
b EgE
| ! e =01
‘ ! [t e cs =05
g fa) Y I
I e——t==F =1
sl [ i/ 1 =02
o =tl Y 7 :
'_‘_ [ u B __ a PR T,
05 _.__! |_ “I[-- I.'.I. H . |
M ' e i
L_- 'sl'."l L i L -
[ & -3 ! 2 4 £ & 9wl

Fig. 2. Surface (dotted line) and central (full line) density of states for small (b) and large (c) difference in
the surface concentration of B-atoms. The plot (a) _corrusponds to the pure. A-system

where /° denotes the step function % shifted by r*. Both densities are thus compositions
of 11 step functions. Their plots are shown in Fig. 2 (a); the full line corresponds to g,
and the dotted line to g, (this convention serves for other figures too).

The presence of steps in the densities for pure systems is very characteristic in our
model. They reflect a specific way if quantization of the z-component of the wave vector k.
k, is not a good quantum number for electrons in a thin film, but we may imagine a “quanti-
zation unit” in the z-direction of the order (2n/d) (d — number of atomic planes in a film)
which is much larger than (2z/N). The “quantity” © plays the role of k in our model.
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The dependence of electron energy, and consequently — the density of states on t, is
however much more complicated than the usual parabolic one.

It is worth noting that the band width of both bands is the same and very close to
that of a three-dimensional system. For the simple cubic crystal one has the value 12.00
in units of |¢|. Here, we have 11.93.

The surface density of states is more concentrated around the central energy (original
atomic energy, E ). This is connected with a redistribution of electrons between the surface
and bulk in materials with the number of electrons per atom different from 1.0 and 0.5.

In alloys this effect may be much greater.

Let us now calculate the two densities of states for an alloy. We consider a two-com-
ponent system of the type 4, _ B, with a completely random distribution of atoms of both
kinds. In contrast to bulk sample theories we admit the surface concentration of B-atoms
to be different from that in the bulk of the film. To such a system we apply the most ele-
mentary version of the CPA method with the diagonal disorder only.

We use two coherent potentials: one (Z,) for the internal planes and one (Z,) for the
surface planes. The well known (see, for instance, [3]) equation for the coherent potential
splits off in our case into two equations

Z:c = ccEB+Ec(EB—Zc)Gc, (29&)

2, = csEB+Zs(EB_Zs)Gs' (29b)

Here,

Gc = G6,69 Gs —- Gl,l’

both Green functions in the site representation. The subscript ““c” refers to the central
plane whereas the subscript “s” — to surface planes.
From the results of Section 3 it follows that

G = G4+2(2,—2,)G?, (30)
where
GO = YA, GO = Y (BB, (30)
Substituting (30) into (29a) one obtains:

Z‘c = ccEB - “:c(EB n ZG)G(O)

=z + - 3
g 22 (Ep—Z)G® Gh
Making use of Eq. (29b) we get the equation for 2
Z, = ¢Ep+ Z(Ep—2) (GV+2(Z,— Z)G) (32)

with X, given by (31). This is one non-linear equation for one complex variable X.
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The total density of states is equal to:

1 EQ—CCEB
—— m .
n Zc(zc_EB)

and analogically for the surface density g,.

g = (33)

5. Discussion

In order to check the validity of the approximation (17) we have calculated the densi-
ties g, and g, for two distinct situations. The first one corresponds to a small difference
between the surface and bulk concentration of B-atoms, e.g. ¢, = 0.1 and ¢, = 0.2. The
second case represents a larger difference between them: ¢, = 0.1 and ¢, = 0.5. In the
latter case g, differs significantly from g, and cuts off sharply on its right edge. This suggests
that such a difference in concentrations may be too high for our model. The plots of g, and
g, in both cases are given in Fig. 2 where we have also placed both derisities for the pure
A-system (two curves distinguished by the index “a”).

TIn Fig. 3 we present a comparison of the densities g, and g, calculated for an uniform:
distribution of B-atoms, equal to 0.1 and 0.5. The atomic energy Ep = 6.0, and at the

\ Ey-60
9\‘ r < P
/’ NG
L 50 cc=01
YN A/in 7 '\II\\\CS =0.1
J )
AN/
i
005" 7 i e __\}‘ =k

| ﬁ/. = ‘\‘3 [ R
| (/ ;L VY YA L W TR AL T

I} LA = B
6-5-4-32-1 01234567839 10 11wt

Fig. 3. Surface (dotted line) and central (full line) density of states for two values of concemration of B-atoms:
¢ = 0.1 or ¢ = 0.5. The surface concentration is the same as in other planes

same time, E, = 0.0 (in units of |¢[). We see that the step structure vanishes very quickly
with increasing concentration of B-atoms. For ¢ = 0.5 it disappears entirely and for ¢ =0.1
it is noticeable on the left parts of the plot only. Simultaneously one observes the existence
of a gap between the 4-part and the B-part of the total densities of states. For higher values.
of ¢ this gap becomes smaller but it still occurs. This is a little unexpected as the value
Ej5 = 6.0 was chosen to lie very close to the right edge of the densities for the pure A-film,
e.g. close to the value 5.93. A narrowing of the original band is also to be underlined here.
Another interesting feature of the result is that the B-band is not concentrated around.
the value Ep = 6.0, but is shifted to higher values of energy; we may call it a “repulsion’
between two band.

Fig. 4 shows the densities for two different nonuniform distributions of B-atoms.
The left plot corresponds to a surface enriched film (c; = 2¢,), the right one is the opposite
case (¢, = 2c,). Both plots reflect these changes very clearly.



401

005 £, —_—|:~_..{\_.l.._|_ S S S VI [

S S S } i s R LU )|

- L - A
CF 4 T2 07 23 45678 o

Fig. 4. Density of states for a nonuniform distribution of B-atoms. The surface concentration ¢s = 2¢, or
¢s = }¢.. Dotted line — surface density, full line — central density

Finally, in Fig. 5 we compare the results obtained for different values of Eg, namely
3.0, 4.0, 5.0, and 6.0. In all cases we put ¢, = ¢, = 0.1, and E, = 0.0. It is easy to observe
the separation of the B-band from the A-band. We want to underline that the surface
B-band separates earlier than the bulk B-band. It drops to zero quicker than the central

Fig. 5. Surface (dotted line) and central (full line) density of states for several values of Ep

band does. The existence of a surface gap alone might be of some importance in future
investigations.

In conclusion we must say that our calculations are only qualitative and based on
a model which is not connected with any real sample. Nevertheless it may be easily adopted
to more realistic situations. The main purpose of this work was to elaborate a method
of calculation suitable for thin films. To our knowledge the problem has not been solved
in the literature.

In our subsequent paper we will present the results of similar calculations for three
other thicknesses (3,7, and 15 atomic layers) of thin films and a comparison will be made.
We will also compare our results with corresponding ones based on the CPA calculations
for semi-infinite samples (Refs. [4-7]).
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