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ELECTRICAL RESISTIVITY FOR THE NON-ORTHOGONAL
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The generalized non-orthogonal Anderson model is considered. Within the semi-
phenomenological simplifications the method of Green functions is applied to obtain the
t-matrix for conduction electrons in terms of the self-energy of localized electrons. The.
localized electrons’ self-energy is calculated in the second order with respect to the Coulomb
potential. The temperature dependence of the low temperature electrical resistivity is dis-
cussed for different degrees of non-orthogonality.

1. Introduction

If one considers the problem of a localized impurity in a dilute alloy, two different
approaches, one due to Anderson [1] and the other to Wolff [2], are commonly applied.
In the Anderson Hamiltonian the impurity is represented by an extra orbital while in that
of Wolff the impurity is considered as a localized potential i.e. as being constructed from
the band states. These two models seem to be the limiting cases of the more general approach
in which the impurity orbital is non-orthogonal to the band states, the overlap <k|d> of
band and impurity states stands for the measure of non-orthogonality [3]. The local prop-
erties of the Anderson and Wolff models are equivalent if the details of the shape of the
density of states are neglected [4]. The analogy breaks down when transport properties
are considered [5]. ,

The aim of the present paper is to obtain the results for electrical resistivity in terms
of the above mentioned general model. Our recent work [6] shows how difficult it is to
develop the thermodynamical theory in the general case. This causes that in order to obtain
legible results, at least some semiphenomenological simplifications must necessarily be
made.
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Our starting Hamiltonian is of the same form as in [6] i.e.
T t z T + T, ot
H= &xCasCra+E ala,+ ﬁ Ch .+ ate,,+Uajaaa, (1.1
koo o ko

1
{dd, Cltrz'} =H \77-\751&’9 {aw cka’} =0 (12)

where

{apal} =3, O<p<L (1.3)

The notations are standard and we refer to [6] for details. For simplicity we assume that
pis k independent. We will perform the calculations in a way which assures that the number
of impurity electrons {ala,> with spin « maintains itself at a constant value of 0.5. This
should be interpreted such that in the limit U — co we are dealing with spin 1/2 which in
general is composed from states which are not orthogonal to the band states.

2. Calculations

We want to calculate the impurity Green function

; 1 .
Ga(TI’ 172) i T <T(aa(’f1)az(fz))>9 (21)
Ga(‘cls 1_'2) = _;;. Z e‘iz;'(“—u)Ga(Z)_), z, = (2'1"21)77:1 , (22)

where A is an integer and the notations are the same as in our previous work [7]. The
equation of motion for the analytic continuation of G,(z;) can be written down as

G(@) = Gou(®) + EGo(0)G () + UG (@) (@), (2.3)
where
1 .
I(tq,75) = '17 <T(aa(71)a—a(13)ata(f-§)a1(‘tz))>t3=t1’ 2.4)
Gou @) = Go(@) = [1+4*(F = 1)] {o—[2uVo+V*(1-p)IF} (2.5)

1 1
F(w) = N Z oot (2.6)

k

and Gy(w) stands for the exact Green function for E = U = 0. We want to develop the
perturbative calculus for G(w) in a way similar to that exploited in [7]. This causes that some
approximations should be made in (2.5). For the Lorentzian density of states

1 D
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it is reasonable to approximate (2.5) by

I_MZ HZ

o+iVi(1—p?)D 7t U,
= (1-p?)Goa(@) + 1 Gow(®)- (2.8)

The first term in (2.8) is the characteristic one for the Anderson model and the second for
the Wolff model. Both terms contribute to the Green function with some weighting factors
and it is apparent that {ala,> = 0.5. Thus the feature that the impurity state is constructed
from two types of electron states which contribute with normalized weighting factors is
preserved. The resonant level half-width in the first term vanishes when p — 1 and such
a behaviour retains the general feature predicted by Rivier and Zitkova [3]. Certainly, for
i =1 or 0 we obtain the proper limiting forms of the Green function in both models.

We will consider the symmetric case E = —LU which causes that the lowest order
correction to the Green function is of the form [8, 7]

Go(®) =

—ip
G(z)(‘cb 7)) = _(iU)z (.‘; Go(Ty, T2)Go(T2, T3)Go(T35 T2)Go(T2, 73)Go(T3, T1)dT,dT5. 2.9

This enables us to obtain the second order proper self-energy. Staying in agreement with
our simplification (2.8) we assume that the proper self-energy enters Go(w) such that

6(@) = (L= p)Goa(@— (1~ 1)E,) + K Gon(—125,)
= (1-p»)G(@)+ 1> G(w), (2.10)

which means that the terms of the type (1 — u2)pu>Gop2,Gow are neglected. Thus the two
types of electron states which contribute with weighting factors to the impurity state are
renormalized in the same way by the self-energy which in turn depends on the values of
the above mentioned weighting factors.

In order to derive the low temperature electrical resistivity we must find the f-matrix.
On the basis of general results for the Anderson and Wolff models [5, 9] we can argue
that we have two scattering factors being coupled to the band in different ways. In the
considered symmetric case the coupling of the band part of impurity states is realized by
the localized potential 2%, and the coupling of the extra-orbital part by the hybridization

potential V1= p2. Thus on the basis of such semiphenomenological argumentation we
can write down the “‘effective’” Hamiltonian which will be used to calculate the -matrix

FI i Z 8kc’1;¢ck¢ + Eu(z dida) + ”22;1(2 czacOaz)
k,a 4 @

vizg?
JN
k,a

{dq’ cIa’} = 0. (212)

chd,+dicys (2.11)
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According to the usual definition [9] we find after simple calculations

@) = 125,G(@)F (@) + VA1 — i) () [1 - 2E,F(@)] Y, (2.13)
where G (w), G4w) stand for the analytical continuations of the Fourier transforms of
=1 T (cou(t1)cl (22))) and i-1(T(d,(v;)d}7,))) which in the symmetric case are spin inde-
pendent. We should take into account that the two types of orbitals contribute to the

scattering with the above mentioned weighting factors (the total number of localized
electrons is 0.5 for cach spin direction). Thus we make in (2.13) a replacement

G(0) = W*Gy(®),  Gy@) = (1~ p")Ga(w), (2.14)

which in some aspects restores the correlations which are lost in (2.11).

Z, can be calculated in the second order with respect to U in the same way as pre-
viously [7] and we will not repeat the details here. The value of the imaginary part of the
retarded f-matrix (t) at the Fermi surface gives direct information on the electrical
resistivity at reasonable temperatures. Due to symmetry properties [7, 8] we find

. i
DX, (2,—4)+4

—Im ) Dt = - wEu—d)+d (2.15)
' (1—-p*/D 2, )(4-Z,,)

A=V*D", 4 =(1-pdH4, (2.16)

where X, stands for the imaginary part of the self-energy and is of the form
Ziu = (1 _/"z)szi(z> Z’ Z)+y62i(D, D: D)+(1—/'L2)2ﬂ2[2i(23 Za D)
+2¢D, 4, A)+2(4, D, A)+Z(D, D, A)+ 24, D, D)+2(D, 4, D)], 2.17)

_ 0.5u’c K@-P)

Zi(as b’ C) e T {[(a+b)2—cz]ﬁb:d)2—cz]
1 [K(a+b)~Pa+b) _ K(la—b])—P(Ia—bl)]} o
dab| [(a+b)*—c*] [(a—b)*—c*] ’ [

where
X 1 X P

K(x) = [V’ (1+ m) —y <7+ ﬁj)] [B—x"4], (2.19)
P(x) = %(B—xu), (2.20)
B = [b*—a?] [b't/)’ (l+ L) —ay’ (l+ L)] 21

7 2r4 *tara))

! a 7 b

Al (%+ m) i <%+ m) @)
= /314’ u = UlnA. (2.23)

p stands for the digamma function.
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3. Results and discussion

The right hand side of (2.15) is presented in Fig. 1 as a function of reduced tempera-
ture T for different values of u2. Since we want to obtain marked changes with temperature
without integrating over the thermal Fermi window we use the value u = 3 for which the
second order perturbation treatment is still valid [10]. The case A/D = 1 is the most im-
portant for us since this corresponds to the situation independent of band shape. We are
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Fig. 1. Imaginary part of the 7-matrix as a function of reduced temperature. The numbers by the curves
show the values of u2. For both cases # = 3 is assumed. In a) 4/D =1, in b) 4/D = 1/3

dealing with the resonant level composed from band and extra-orbitals and for p? = 0
or 1 we derive the Anderson or Wolff type behaviour. It is apparent from Fig. la that in
the intermediate region of the values of u? the temperature dependence at low temperatures
can be significantly weaker than that for u? = 0 or 1. A quite pronounced minimum can
also appear. These effects are quenched with the increase of 4/D. One can state that the
general features observed in Fig. 1 remain in agreement with the properties of dilute Rh-
based alloys (as mentioned in [3]). There are also systems for which the impurity contribu-
tion to electrical resistivity is temperature independent at low temperatures (AITi AlV
and many others, see [11] for details). Furthermore one can suppose that the non-orthogonal-
ity can contribute to the minimum in the electrical resistivity which in general is considered
as being due to the addition of the phonon part or taking the crystalline field effects into
account. There are systems (e.g. PdPr) in which the minimum appears in the impurity
contribution and it is not clear if this effect can be explained through the use of the crystalline
field theory [12]. Although the host enhancement does not seem to be important for trans-
port properties (if qualitative conclusions are to be drawn), the applicability of the single
level model to a system like PdPr is doubtful. The method of calculations should be also
improved. Thus, the present results can stand as a suggestion only that the non-orthogonal-
ity can lead to interesting effects in some dilute alloy systems.
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