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Distorted atomic chain is described in the tight binding approximation. For this system,
using the Green functions method the dynamical electrical conductivity is calculated exactly.

1. Introduction

One-dimensional, or more correctly, quasi-one-dimensional crystals are experimentally
and theoretically extensively studied [1]. The physical properties of these systems very
often show peculiar features and anomalies, existence of an insulator — metal like transi-
tion, structural and magnetic.transitions. From theoretical point of view one-dimensional
electron systems are unstable and the Peierls instability, the charge density wave (CDW)
or the spin density wave is often considered (see e.g. {1, 2]). If in the system the distortion
of the atomic chain (the Peierls distortion) appears then electron hopping integrals are
modulated with a period of the distortion. However, the modulation of the hopping
integrals may be due not only to the lattice modulation. For example, in TCNQ salts
with asymmetric donors we expect that ordered donor chains modulate electron hopping
integrals in an acceptor chain, as well. Thus, the electronic band structure may be analo-
gical in both cases, but in the latter case the chain is undistorted. We distinctly differentiate
these two models (see also [3]).

In this paper we investigate. the conductivity of the distorted electron system (the
Peierls distorted system). In Section 2 we describe in the tight binding approximation,
a one-dimensional electron model ‘with two atoms per unit cell. Next, in Section 3 we
calculated, using the Green function method (see e.g. [4]), the dynamical electrical conducti-
vity. For this simple model the result is exact.

* This work was supported by the Polish Academy of Sciences within M.R.-1.9 project.
** Address: Instytut Fizyki Molekularnej PAN, Smoluchowskiego 17/19, 60-179 Poznan, Poland.
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2. Distorted one-dimensional electron system in the tight binding approximation

We consider a distorted atomic chain with a half-filled electronic band. In agreement
with the Peierls conclusion [5] the period of the distortion is equal to two lattice constants.
This situation is shown in Fig. 1. Open circles represent a regular chain with lattice constant
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Fig. 1. Distorted chain with one electron per atom

a while full circles — displaced atoms to a distance w: A Hamiltonian of the system in the
tight binding approximation is given by
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where V(r) is an atomic potential, n is the number of the unit cell, while s — the number
of the atom inside a cell. The Bloch function is written in the form

‘/’(") \/‘— Z Askeik(Rner)qs(?‘ = Rh '— : s): (2}

where ¢(r) is an atomic function. If we confine calculations to two-center integrals, then:
the energy E and the coefficients -4 are: calculated from: the equatlons

{Alkﬂ+Azk 3 [tce'”"”“)-H - "'2“’] EAu g
Asz+A1k 2L [tce—zk(rz-'rx)+tFe—;k(rzj‘n—Z“)] = EAy, . F(3).
where

# = Eot [dr¢*(r=r)V(@=r)d(r=r)+ [ drg*=r)V(r=ri=20)(r=r2) (&)

is the crystal field potentlal (E is an atomxc level),

te = | drg(r=r)V(r=r)(r=r) ®)
is the electron hopping integral between atoms inside a unit cell,
te = | drg*(r=rp)V(r —ry=20)p(r— 7, ~20) ©

is the electron hopping integrals between atoms from neighbour unit cells. The results are

E1<'2)(k) = p{#* cos? ka+ 6% sin® ka}/? o
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and

1 te—tk(rz—r1)+t e«;k(rz ri~2a)" , i
Tz An = i:/_dz— it elk(rz-r1)+t rik(ra—rg— 2a)l = * :/’Eb(k)’ 3

(t = (te+1p)]2, & = (te—t)/2 and ry—ry = a—2u).

In the second quantiza’tvi‘bn we hévé?the function

R 'P(") "‘ Z ¢(r R s)an s = ; V'QPpk(r)apk’ (9)
p=1,2 s

where 9, (r) is the Bloch functlon ,

Prap) = \/2 ¥ Z te lk(R"”’)(b(i‘ -7) (+)e"‘(R"+'2)b(k)¢(r —T2)} (10)

The Hamiltonian

H=Y (tcal 18,2+ tp0} 28ni1,1) = 2 Ep(k)a;kapks (11}
n 8 " k,p

describes the distorted electron system in the tight binding approximation @y 5, Ay ATE
annihilation operators of an electronin n-th unit cell and on s-th site, or in'the band p= 1,2
with wave vector k, respectively. They transform- according to

1 :
J‘an,l = \7—2—1——-\7 Z e*Brtr(g +ay)

. 1. ; iy ] o
tan,z = f]\-} Z e k(é"f 2p(k) (Ea%k""aﬂc)' » - (12}

k

The spin index is neglected everywhere.

~ The electron dispersion curve given by Eq. (7) is identical with the result obtain-
ed for an undistorted chain with modulated hopping integrals [6]. However, only some
physical quantities are identical for both models. For example, the dynamical electrical
conductivity (given in the next section) depends on the electronic band structure as welk
as on distances between ions.

The crystallographic structure of NMP-TCNQ is schematically shown in Fig. 2. We
consider the central TCNQ chain perpendicular to the plane of the picture. The methyk
groups are in positions 1 or 2 and 3 or 4. From X-ray measurments Kobayashi [7] concludes
that in NMP-TCNQ crystals there are antiferroelectrically ordered NMP chains. The
electrical dipoles are arranged in the perpendicular to the c-axis independent sheets, i.e.in
the c-axis direction there are no correlations between them. (However, Morosin [8]asserts
that dipole moments in NMP chains are disordered.) Thus, in agreement with Kobayashi’s



354

conclusion, the methyl groups are in the position 1, in the second plane in the position 2,
in the position 1 in the next plane and 'so on.

We suppose that physical properties of NMP-TCNQ depend on the properties of
TCNQ chains as well as on their neighbourhoods. The distance from CH; in the position 1

C

Fig. 2. Schematic crystallographic structure of NMP-TCNQ (the axis of the chains is perpendicular to
the plane of the picture). The numbers are placed in the possible configurations of the methyl groups

to the central TCNQ molecule (Fig. 2) is longer than from CHj in the position 2 and if the
NMP chains are antiferroelectrically orered, we expect, that the electron hopping integrals
in TCNQ chain are mcdulated with a period of two lattice constants.

3. Conductivity of the Peierls distorted system

In this chapter we calculate the dynamical electrical conductivity for the distorted
one-dimensional electron model in the tight binding approximation, which is described
in the preceeding section. We use the Green function methcd of Zubarev as described
by Smith and Lawson [4]. A current operator is dzfined by

where P is a polarization vector

P = e Z X,a}'a,, (14)
4

{X; = R,+ry. The perturbation of the system, i.e. the electric field E = E '™, is adiabatic-
ally switched on and for the first order perturbation we obtain

J®y = - —1- Z eEoX, J (1) laf()ay(z)pe™dx. 15)
l - @
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where ¢... | ...Y denotes the refarded Green function. Integrating (15) by parts and assuming

translation symmetry we may write [4]
d or
X, = (ai(r)a(r)) ) ) e"dr. (16)
3

o

E,
IO = %" f <<j(t)

-

Using the transformation (12) we have
0
. e . .
@) = P Ege'™ E f dee'™{ fi(k, k') [G1111+ G222z
. kK =

~Gy122=Gaa11]+f2(k, K [Gri12+Gr221—G1121—Ga2212]
+f3(k, k) [Gy211+G2122— G2111 = Gi222] Hfulk, k') [G1212 ‘

+Gay21~G1221—G2112]} an
where G denotes Green’s function
Gy papspalks k' ) = «azlk(f)apzk('t) la;3k'ap4k'>>9 (18)

p; = 1,2 are the band indices and f are the functions

filk, ) = a(R)a(k),  fo(k, k') = a(k)B(K'),

Sk, 1) = Rk, Sulks k) = BUIFCK), (19)
where : '
a(k) = =—2tctpa sin 2kalE,,
B(k) = i[t¥(a—2u)—t2(a+2u)—4tctru cos 2ka]/E,, (20)
and
E, = {t* cos” ka+ 67 sin® ka}'/. (1)
Using the spectral representation of Green’s function- we. write
ie? . T . 0(7) b —iE
J(E)Y = — Ege™™ Z flk, k) | dte™ e dEe™***
@
kK’ -0 -

s

1

) -
J¥(E) (!F-1) = il Eqe™ z fulk, & f dre'*
k& -

[#]

6—@ J dE(e”E——l)zl——n f dr' ¢ {at.apal(t)a(t)). (22)
1
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(We must remember that we sum also on the band indices). The thermodynamical averages,
standing after the functions f,(k, k') and f3(k, k'), are equal zero (see Egs. (17) and (22)).
Using anti-commutator or commutator Green’s functions and the relation

s}

<BO)A®1)) =

-

—~iowt

L hm [_<<A1B>>w+lc <<A|B>>m 18] (23)

27‘[ eﬂ —H =0+

(where = +1 for a commutator or anti-commutator Green’s function, respectively)
we calculate the averages standing after fi(k, k') and f,(k, k'). For example

2k+n1k 3B

o2y | 24)

Calpayal(D)au(®)) = Sy -
Finally, we employ the fact that (
J(D> = o(@)Eee™, (25)

and we write the dynamical conductivity in the form

.2 ; g < ,BE __
o(w) = % Z {cxz(k)anknlk '[P f dE (‘;Jr;-) S(E)+in(e’— 1)5(0))];
k.

o0

1 ¢ (e’F —1)8(E—2E)
_R2 2 2 | P dE - —— 24 . 2BE,__ 2
/3 (k) (n1k+n2k) (esz,‘_{_l [ j‘ D —— lTC(e 1)5(0)“‘" Ek):l

i ¢}

o0

1 . (e'“f— 1)5(E+2Ek) .
+ T [P f dE —- —nTs +in(e e - 1)d(w— 2Ek)]>} (26)

and

Re o(@) = lce_ 4(t* —&%)’a* sin” 2ka

IBT t Cos ka+52 sul k nk(l nk)a(w)

z [(t+5) (a 2u) -(t=90)*(a+2u)— 4(t2 5%)u cos 2ka:|2

1* cos® ka+ 62 sin® ka

x(2n,—1) [6(w—2E)—d(w+2E)], (VX))

where n, = {exp (—E,/kgT)+1}7%

For our simple Hamiltonian (11) we obtained exactly the dy namical electrical conducti-
vity (Eqs. (26) and (27)). The first term of Eq. (27) is the d.c. conductivity (w = 0). The
second one is the optical conductivity (w # 0) and dzpends of the variation of the hopping
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integral 6 and on the lattice distortion #. We expect that the dynamical electrical conducti-
vity measurements (o # 0) can provide an answer to the questions: does the Peierls distor-
tion occur or do the surroudings modulate the electron hopping integrals in the TCNQ
chains?

We have very similar electron dispersion curves for the case of the distorted chain
and for that one, which probably occurs in NMP-TCNQ, where the NMP chains modulate
the hopping integrals'as well as the atomic level in the TCNQ chain. However, from these
calculations (Eq. 27) we see that the a.c. conductivity is different for both cases.

4. Discussion

The NMP-TCNQ crystal has the half-filled electromc band [9] and now we compare
the calculated d.c. conductivity with experlmental data [10]. We want to emphasize that
we only illustrate the usefulness of the calculations presented above. In NMP-TCNQ
Coulomb and interchain interactions are strong [1]. The influence of the NMP molecules
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Fig. 3. The d.c. conductivity for the distorted one-dimensional electron system. o = §/d,, whele 60
= &(T = 0) is the energy gap determined for zero temperature in the mean field approximation (MFA) [113

on the TCNQ chain complicates the problem, also. Thus, our model is too SImple for an
adequate description of this crystal.

Fig. 3 shows the d.c. conductivity (i.e. Re o(w =0) = aO(T)) for different gap param-
eters « = /0o, Where §o = &(T" = 0) is the gap determined in the mean field approxima-
tion, for zero temperature. For constant o(T) we have nearly straight lines, i.e. below a criti-
cal temperature, with decreasing temperature the conductivity decreases nearly exponen-
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tially. For low temperature, é/kz > 1, we have an inequality

32 2 2
52
The curve denoted by MFA presents the temperature dependence of the conductivity for the
energy gap determined for the Frohlich model [11] in the mean field approximation.
(The MFA gap follows the BCS type temperature dependence [11] — see Fig. 4.)
Fig. 3 may be used as a pattern to determine the temperature dependence of the energy
gap. In this figure we draw the experimental points NMP-TCNQ [10] and for a given
temperature we read the value of the energy gap «. The results are ‘presented in Fig. 4.

oo(T) < 220 exp [—fkaT]. (28)
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Fig. 4. Temperature dependence of the energy gap of NMP-TCNQ determined from the experimental
data of the conductivity [10] and our theoretical calculations for the distorted model. MFA. denotes the
temperature dependence of the gap calculated for the Frohlich model in the mean field approximation {11}

This curve has evidently different temperature dependence than the MFA curve. We
mentioned above that our model was too simple to claim a description of NMP-TCNQ.
We cannot exclude the hypothetical possibility of the non-MFA type temperature depen-
dence of the gap in NMP-TCNQ.

The author would like to express his sincere thanks to Professor J. Morkowski for
helpful discussions, for many comments and a critical reading of the manuscript.
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