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LOCAL MODE FREQUENCIES DUE TO MONOVALENT
IMPURITIES IN AgBr

By M. D. TiwaAri, P. N. Ram* AND V. K. MANCHANDA**
Department of Physics, Garhwal University***
( Received April 27, 1979)

The local mode frequencies due to Lit, and Nat impurities in AgBr were calculated
using Green’s function metbod. The perturbation model takes into account the change in
mass at the impurity site and change in the nearest-neighbour central force constant between
the impurity and the host ion. We have also obtained the effective force constant for the host
lattice using the experimencal local mode frequencies. To get a good fit with the experimental
frequencies a 44 % decrease in central forces is required in AgBr: Li* whereas a 16 % increase
in central forces is seen in the case of AgBr: Nat.

1. Introduction

Since the pioneering work of Schieffer [1] on U-centre induced localized modes in
alkali halides, a large amount of experimental as well as theoretical [2-5] work has been
done on impurity induced infrared absorption. The main centre of attraction in these
studies are alkali halides with the NaCl-structure. Recently, Hattori et al. [6, 7] have
reported the experimental results on the impurity induced lattice absorption in silver
halides. These authors have discussed their results of localized mode absorption taking
a simple linear diatomic chain model with the mass defect given by Lucovsky et al. [8].
They have calculated the change in the force constant at the impurity site using the diatomic
three dimensional model of Takeno [9]. From a theoretical point of view the most appro-
priate way to analyze the experimental results on impurity induced properties of solids is
to use Green’s function technique. This takes into account the entire phonon spectrum
of the lattice and thus it is more realistic compared to other simple phenomenological
models.

The purpose of the present paper is to calculate the local mode frequencies due to
Li* and Na* impurities in AgBr using Green’s function method. The central force point-ion
model for the impurity host interaction is used in the calculations. This model is character-
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ized by change in mass at the impurity site and a change in the nearest neighbour central
force constant between the impurity and the host ion. We have also obtained the effective
force constant for the host lattice using the experimental local mode frequencies. The
mass-defect calculation for the local mode frequencies are in better agreement with the
experimental results than is that reported by Hattori et al. To fit the experimental frequen-
cies a 44 % decrease in central forces is required in AgBr: Li+ whereas 169 increase in
central forces is seen in the case of AgBr: Nat.

In order to calculate Green’s function the necessary eigen frequencies and eigen
vectors for AgBr were supplied by Bithrer who calculated the lattice dynamics by using
a modified shell model [10, 11].

2. Theory
A. Perturbation model

The Green’s functions matrix G for the imperfect crystal is related to the Green’s
function matrix G, of the perfect crystal by the Dyson equation.

G = (I+G - P)"'G,, 4y

where P is the perturbation matrix due to the presence of an impurity in the host lattice.
Introducing T-matrix, Eq. (1) can be written as

G = GO_GO TGo. (2)
Here the T-matrix is defined by
T = P(I+G,P)". 3)

For isolated impurities the non-zero elements of the P-matrix lie in what is known as
impurity space which comprises the impurity and its nearest neighbours. In the present
case the impurity space consists of the space occupied by the impurity and its six nearest
neighbours and thus the dimension of the P-matrix is 21 x 21. By group theoretical argu-
ments it is known that the modes corresponding to an irreducible representation
transforming according to a polar vector can only interact with the incident light. In the
present case the point group symmetry of the impurity site is O,. The normal modes which
transform according to the irreducible representation F,, are infrared active. Using the
necessary symmetry coordinates i.e. the symmetrized linear combinations of ionic displace-
ments. in the impurity space, the matrix P, can be block diagonalized according to the
different irreducible representation. The matrix elements of P in the F, representation are:

—e?+2A+42 —(2x)Y2  —2xt2Y
Pr, =| —(2x)'"*4 XA 0 , (4)
—2xt2y 0 xA

where ¢ = AM /M, is the mass change parameter and x = M./M_ is the ratio of the
masses of the ions of the two host sublattices. A = Ar/M ;. and A’ = Ar’'/M ;. are the changes
in the central and non-central nearest neighbour effective force constants, respectively,
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in units of squared frequency. The upper signs apply when the impurity occupies a positive
ion site and the lower signs when it occupies a negative ion site.

If we denote the Green’s function matrix for the unperturbed crystal in the impurity
space by g(z), where z is the complex squared frequency, z = w?+2i®d, in the limit as
5 — 0., the matrix element of g(z) for the F,,-irreducible representation are seen to be

gt 28 28
gru(2) = |v285 gF+gr 24248 , (5
285 228F ef+285+gs
where
£ = 2x(0,0,0;0,0,0), g5 = £,(0,0,051,0,0), g5 = g,(0,0,0;1,0,0),
gr = £.(1,0,0;0,1,0), g5 =g.(1,0,0;0,1,0), gi = g,(1,0,0;0,1,0),
g7 = 2(1,0,0; —1,0,0), g& = g,(1,0,0; —1,0,0). (6)

g
i
Il

The explicit expression for the elements of the Green’s function matrix g(z) is given by

e, R Jekis)
0= g ) | s )

where Q is the primitive unit cell volume of the lattice, s is the branch index, k and D7
are the wave vectors and the frequency of the normal modes of the perfect lattice, respec-
tively. The integration is carried over the first Brillouin zone (BZ). The jei are given by
the following expressions:

JE = led£k)?, 5 = e T, ks)e¥(&[ks) cos (4 k.a),
3 = e Flks)ei(£ [kx) cos (3 k,a),  ji = le(F [ks)|? cos (L ka) cos (3 k,a),
£ = leFlks)l* cos (G kya) cos G ka),  jE = e Flks)e*(Flks) sin (& kya) sin (3 kya),
J7 = leFlks)[* cos (kya),  j§ = le(F[ks)|? cos (k,a), ®)
whre x,y,z =1,2,3 and x # y # z.

B. Localized modes

The resonance denominator contained in the inverse matrix [I+ GP]! is of central
importance in the study of defect modes. By separating its real and imaginary parts we
have:

D(z) = det [I+g(2)p(w?)| = Re D(2)+iIm D(2). %)
The frequencies of the localized, gap or resonance, modes are the solutions of the equation

Re D(z) = 0. (10)
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In the infrared active mode the resonance denominator is given by
Dp,(2) = 1—sw’gf +A[2g] —4/xgF +x(gF +8F)
—xeo’{gf(gF +27)—2¢5 711, (11)

where we have put A’ = 0, i.e. only central forces are considered. Condition (10) is used
to determine the changes in the central force constant. If only central forces are considered
the lattice Green’s functions for the perfect crystal are constrained by the site symmetry
of the impurity and the relations between them can be obtained [12]. These relations for
the NaCl-structure and in the present nearest neighbour defect model are seen to be

gt —2x'"gs = 1+0’gY,  2ngy —x'n(gf +g7) = 0’g5. (12)
Here, n = r/M, is the nearest neighbour effective force constant for the perfect lattice.
Using these relations the resonance denominator (11) simplifies to

Dr,(2) = (1+B) (1 —ew’gi) + f(L +¢) (@*/24) (1 +0%g}), (13)

where i = A/ is the relative change in central force constant. It is noted that only same-site
Green’s function g7 is required in equation (13). Using the two forms of the resonance
denominator Dy, (2) (Egs. (11), (13)), the nearest-neighbour effective force constant for
pure crystal is easily evaluated.

3. Numerical computations and results

A. Green’s functions

In order to calculate the complex Green’s functions defined by equations (7) and (8)
a staggered bin averaging procedure is followed. The quantities given in Eq. (8) were
calculated first and sorted by dividing the frequency interval into sixty equal bins. The
resulting histograms were used to calculate the imaginary and real parts of the Green’s
functions separately. To carry out the numerical integration in the real part of the Green’s
functions, the method suggested by Maradudin was followed. In these summations a grid
of 4,000 uniformly distributed k-points inside the Brillouin zone was employed.

In carrying out the integration, the frequency increment used is of vital importance,
especially when a finite number of distinct k-points in the Brillouin zone have been used.
A value of the frequency increment that is too small will cause spurious fluctuations in
Green’s functions, while with a value too large the frequency dependent nature of Green’s
function will be lost. For the present choice of 4,000 points in the Brillouin zone, a value
of 0.4 for the frequency increment in units of bins was found to be appropriate and was
used in the calculations.

The required normal mode frequencies and eigen vectors of AgBr were kindly supplied
to us by Biihrer [11]. As a representative case the real and imaginary parts of the Green’s
function g; are shown in Figure 1.
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Fig. 1. Calculated real and imaginary parts of the Green’s function g} for AgBr

B. Local modes
We now consider Eq. (10) to determine the impurity modes in AgBr. For A = 0 this

equation reduces to the isotopic defect approximation

1—ew?g, = 0. (14

TABLE I

Localized mode frequency (cm—?) and the force constant change due to °Li*, "Li+ and Na+ in AgBr

._ Systems of (exp) o, (cal) Wheor | A
Ag Br: 6Lit+ 205.9 262.10 311.8 —0.31 X 102 sec~2
Ag Br: "Li* 191.8 246.45 289.6 —0.32 x10%% sec2
Ag Br: Nat 166.7 157.09 168.8 0.12x10%% sec2

a Reference [7].

This equation was used to calculate the local mode frequencies due to SLit, Li+ and Na*
and these are shown in Table I along with the experimental values and values calculated
by Hattori et al. [7]. To fit the experimental frequencies the required value of the central
force constant changes determined by equations (10) and (11) are included in Table I.
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From Table I it can be seen that the calculated localized mode frequencies in a mass
defect approximation in lithium doped crystals are in better agreement with the experi-
mental results than the theoretical results obtained by Hattori et al. [7] in a linear diatomic
chain model. In the case of AgBr: Na* our calculated value for the localized mode frequency
is less than the experimental results which is not surprising in view of the obtained increase
in the force constant as a result of fitting the experimental frequency. This result is in accord
with the fact that the effect of force constant hardening is to push the lcoalized mode
frequency away from the band-edge, whereas the opposite occurs with force constant
softening [14-16].

We also see from Table I that the experimental local mode frequencies, wy, g, (°Li*)
and o g, ("Li*), are explained by the value of A = —0.31x 10?6 sec~? and A = —0.32
% 10%¢ sec~2, respectively. Because °Li* and “Li* are isotopes of the same ion we expect
the experimental values of w; (°Li*) and w; ("Li*) to be reproduced by the same value
of 2, and this is found almost to be the case in the present work. Thus, the lithium impurity
can be described by an Einstein oscillator and the frequency ratio of two localized modes
due to Li isotopes is equal to the square root of the inverse ratio of these impurity masses,

that is,

w(°Li Mo \'?

: L(7 f) = = 1.080, (15)
COL( Ll) MGLi

which is fairly close to the ratio 1.074 of experimentally determined localized frequencies
due to °Lit and "Lit.

- Now using the calculated values of the force constant change and the experimentally
localized mode frequencies, the effective force constant for the perfect crystal is easily
calculated using equations (11) and (13). The calculated values of the effective force constant
(2y) is found to be 1.42x 1026 sec™2, 1.44 x 1026 sec=2 and 1.50 x 10?¢ sec~2 corresponding
to the systems AgBr:°Li+, AgBr: "Lit and AgBr: Nat, respectively. These values may
be compared with

2
A 159%10% sec?,
2v- M,

where A is the nearest neighbour central force constant used in the shell model calculation
of lattice dynamics by Biihrer [6, 7].

4. Conclusion

By employing a simple perturbation model for the impurity that includes the change
in mass at the impurity site along with the changes in the nearest neighbour central force
constants we have studied the dynamics of imperfect AgBr crystals based on a Green’s
function technique. The changes in the nearest neighbour central force constant due to
6Lit, "Li* and Na* ions was calculated by fitting the local mode frequencies with the
experimental data. The change in the central force constant and the experimental values
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of the localized mode frequency were used to calculate the nearest neighbour effective
force constant in a perfect crystal.

The authors are indebted to Dr. Bal K. Agrawal and Dr. B. S. Rajput for their interest
in the present work and to Dr. W. Biihrer for sending the results of the lattice dynamics of
AgBr. Financial assistance provided by the University Grants Commission, New Delhi is
thankfully acknowledged.
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