Vol. AS7 (1980) ACTA PHYSICA POLONICA No 3

MODEL PSEUDOPOTENTIAL IN SIMPLE METALS
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The model potential proposed by Sharma and Srivastava has been used to study the
various properties of simple metals. New core radii have also been reported corresponding
to three dielectric functions. For most metals, the model potential successfully describes the
atomic properties.

1. Introduction

The application of the pseudopotential technique in determining many of the physical
properites of metals has proved to be very successful. In the last decade, a large number
of papers have been published on this approach. An attempt towards this approach has
also been made by Sharma and Srivastava [1] who have proposed a bare ion model potential
for simple metals. They have obtained satisfactory results for the various properties of
liquid metals [2]. In this communication several properties of solid metals have been
reported. In Section 2 we shall briefly review the model potential. In Section 3 the problem
of conduction electron exchange and correlation is treated. Lastly, in Section 4 calculations
of properties like binding energy and compressibility, transition temperature, the Fermi
surface distortion, monovacancy resistivity and third order elastic constants in simple
metals have been presented. The obtained results are compared with available experimental
values. In general, good agreement is achieved in theory and experiment.

2. The model pseudopotential

The Fourier transform of a bare ion pseudopotential was expressed in the form

dnze® 4mze® |
of t E&T(sm qre=4qre €os qro), )

Wy(q) = —

where z, , r, ate valence, atomic volume and the radius of an ion core. In earlier studies
{11, the values of core radii r, were taken from the work of Shyu and Gaspari and Ashcroft.
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TABLE
Core radius (r, c) for SImpIe metals (in a.u.)
i Dielectric function
Metal ’ Valency — — —————
} RP.A. | Sham I Singwi | Ref. [1]
— S - — k= i
Li i 1 1.746 1.720 : 1.694 ‘ 1.678
Na | 1 1.551 1.546 1.536 1.758
X 1 1.871 | 1.864 1.854 2.133
Rb | 1 2.080 ° =L { — 2.256
Al | 3 1.060 1.053 [ —_ 1.131
Pb ] 4 1.065 1.075 [ { ' 1.075

In this paper, the parameter r, has been determined by fitting V(q) = Wy(q)/e(g) to the
expenmentally determined point [3] at ¢ equal to the (110) and (111) reciprocal lattice
vector for b.c.c. and f.c.c. metals respectlvely The core radii 7, corresponding to three
dielectric functions have been reported in Table I. The screened form factors in the present
study and in Sharma and Srivastava [1] possess a similar trend at low ‘g values but our
form factors decrease rapidly at large g values.

3. The dielectric screening

The problem of exact analysis for the response of an electron gas at metallic densities
is difficult. In recent years, a great deal of attention has been given to the problem of a homo-
geneous gas of interaction electrons. The most commonly used dielectric is the Hartree
dielectric function which later has been modified by various authors who have suggested
different expressions for exchange and correlation. In the present work we have used the
modified Hartree dielectric function which is given by

" 4kt — 4> -
= = ~1@) ZEF[ ratl ] : @

The function f(g) corrects for exchange and correlation effects. In the present calcula-
tions we have used three different forms of f(g):
(1) the Random Phase Approximation proposed by Linhard [4]

flg) = 0;
(2) an expression introduced by Sham [5]
f@) = ¢12¢” + g+ k3)

(3) the expression given by Singwi et al. [6] who have included the effect of the local
field in a self consistent way

Jssti(@) = A[1—exp {~Bq?/kE}].
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4. Results and discussions

4.1. Binding energy and compressibility

Considering the free electron approximation and the perturbation theory, the binding
energy and compressibility were calculated using the expression of Saxena et al. [7]. The
overlap repulsion between ion cores was neglected
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TABLE 1L
Theoretical and experimental values of binding energy and compressibility
Bmdmg energy Ry/electron (—Eyp) Compresslblhty (k ko)
Metal — — - e
Theoretical { Experimental Theoretical Experxmental
Li -0.550 0.551 1.65 2.0
Na ) 0.470 0.460 1.30 1.5
K 0.396 0.390 1.08 | 1.0
Rb 0.371 | 0.366 0.900 | 0.82

The calculated values are listed in Table IL. The results seem to be in good agreement
with experiment. It is seen that a small change in the core radius due to the dielectric
constant does not make an apprec1able change in the value of the binding energy and
compressibility.

4,2. Transition temperature

McMillion [8] has derived an approximate solution of the Nambu-Gorkov [9, 10}
equations and obtained a simple formula for the transition temperature T as a function
of the electron-phonon mass enhancement A and the Coulomb coupling p* as ’

0y [ [ Lod+h)
Tc“m-exl’[ (i—u*(1+0.62/1)>]” 3
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‘where 6, is the Debye temperature, kg the Fermi wave vector, Ep the Fermi energy and
£(q) the dielectric function for momentum transfer ¢.

The parameter 1 which provides a direct measure to the electron-phonon coupling
strength has been calculated by various workers for simple metals using a variety of ap-
‘proaches. Seven such calculations have been summarized by Allen and Cohen [11] which
showed that, at least for simple metals, the most naive calculations give the same result as

‘the most complex. The expression for 1 is given by Rajput and Gupta [12] as
2k
-
W (9)dg,
Of HON

m,
 AnkeME?63

(8

‘where Q, represents the atomic volume, A the atomic mass, W,(g) the bare pseudopotential.
"The calculated values of the mass enhancement A, the Coulomb pseudopotential p* and
‘the superconduction transition temperature 7, are given in Table III and compared with
-experimental results. The agreement between the theoretical and experimental values of

TABLE 111
Calculated values of the superconducting state parameters
D u* e A A 7. T Te .
Metal () | RPA. | Sham | RPA. | Sham R.P.A. Sham | Experi-
mental
== = = r—— _ _ L
Li 335 0.1200 0.1245 | 0.2211 0.2530 7.1%x10-% 0.0014 | <0.08
Na 156 0.1180 0.1222 | 0.2240 0.2821 7.2%x10-3 0.0071
K 91 0.1198 0.1237 0.2080 | 0.2633 1.9x10-¢ 0.0001
Al 423 0.1023 0.1058 0.3841 | 0.4550 1.1 2.0 1.196
Pb | 102 | 0.0927 0.0955 0.8686 1.038 5.0 6.5 l 7.23

‘the T, is comparable for aluminium and lead. No experimental results are available for
T, of alkali metals, however our present calculations are in agreement with other theoretical
‘values [11, 13] and predict that alkali metals behave as normal metals. To conclude, we
-can therefore say that the present model potential is successful in interpreting the super-
-conduction state parameters.

-4.3. The Fermi surface distortion

Experimental [14, 16] and theoretical [17-25] studies have yielded information about
‘the anisotropies of Fermi surfaces of simple metals i.e. the Fermi surface should be slightly
-distorted from a free electron sphere and the distortion should increase in the sequence
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Na, K, Rb, Cs. The electronic band structure is determined by the secular equation

2

h ] ‘
det [T (k—Q)Z—EkJ dgp +Flg—4)W(q—q') = 0, ®
m -

where F(g—q’) is the structure factor. The distortion of the Fermi surface from a free
electron sphere may be written as

ke = kO[1+4(6)]. (10)

Here 0 is the angle between kg and g and kg is the free electronic Fermi wave number.
Thus A(6) is the dilation to the free electron Fermi radius kp. From second order perturba-
tion theory we can write

B |
Be= o = ) CQIVG i1
.am i : 2a

g pairs

To evaluate C(g), we make use of the condition that the distortion should not alter the
volume enclosed by the Fermi surface. Elementary integration yields

m 2k2+q

C(g) = ¢ 12

@ = e, ™ | 2=, (12)
The quantity A(G) is small and hence higher powers of A(6) are neglected. We find
Ak V(g 1

e == —-C 3

kY Ep  \(h?[2m)q* —4E} cos 0,, @) ,,( )
q pairs 3

which indicates that the deviation from sphericity are simply additive and any number
of the Bragg plane pairs can be considered. In the present calculation the summation has
been done up. to the 8th neighbour for reciprocal lattice vectors.

The radial distortion of the Fermi surface of Li, Na and K along the (100), (110) and
(111) directions are calculated using'¢quations (11) and (13). The values of x, y and §
are also calculated from the distortions along the (100), (110) and (111) dorections. The
calculated values are presented in Table IV and compared with the experimental values.
The agreement between the calculated and experimental values is reasonable. The radial
distortion of the Fermi surface is found to be too small for alkali metals which shows
that the Fermi surface of alkali metals is nearly spherical. In the present calculation the
value of effective mass is considered to be a unity. It can be clearly seen in Table IV that
the values of ¥ for Li, Na and K obtained from the present calculation are better than the
recent calculation of So et al. who have included the effect of effective mass in terms of
bare mass and the eléctron-phonon coupling parameter. Our calculated values of x for
Na and K are to be found poorer than So et al.’s results. It is important to note that the
calculated value of the radial distortion & for Li is extremely good and very close to the
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recent experimental value of Randlés and Springford [16]. It is surpising that the distortion
of K along the (100) direction in experiment is found to ‘be positive while it is negative
in the case of Li, Na and Rb.

4.4, -Monovaéancy rev__sii:s_tivity )

The monovacancy resistivity within the framework of the pseudopotential formalismx
can be calculated as has been attempted by : various workers [26, 27]. The expression is

L 3nQ : b
Q= i/;%} V@I,

where )
. 2kg
O L L TR Y
SV = pyE: f V(Dl"q dg, 1 )
. pe .

where Vg is the Fermi velocity and ¥(g) is the pseudopotential matrix element screened
by the dielectric constant.

Monovancancy resistivity of simple metals are presented for three dielectric constants
in Table V. No reasonable comparison between theory and experiment is possible here
due to the lack of experimental results. For comparison, the theoretical results obtained

TABLE 'V
Resistivity -of vacancies in simple metals in @ Q cm/at %
Pidectsic | ] e 1 e T
function Li | Na K Al Pb
R.P.A. 0.43 0.80 1.25 0,48 0.80
Sham 0.49 1.01 1.58 0.57 . 098
Singwi et al. 0.52 i 1.20 1.86 0.68 1.1
Ref. [21]. 0.76 I 1.13 1.53 0.67 —

by Shyu et al. [26] using Singwi et al.’s [6] screening are also listed. Harrison [28] has also
calculated gin Al tobe 0.8 pQ cm/at % using Hartree dielectric screening. Some discrepancies
may arise here from neglecting lattice distortion and assuming that the vacancy concentra-
tion is small, so that one has essentially a collection of singly isolated vacancies. It can
be seen that the calculated values of monovacancy resistivity are better for Singwi et al.’s
dielectric constant.” Similar trend has been obtained by Shyu et al.

4.5. Third order elastic constants of sodium and potassium

While considerable work has been done with sufficient success in the study of second
order elastic constants of alkali metals [29-31] by both theoretical and experimental
workers, much less attention has been paid to the study of third order elastic constants
(TOE). There are two methods for calculating the elastic constants, the long wave method
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and the homogeneous deformation method. The method of homogeneous deformation
was extended to third order elastic constants of alkali metals by Suzuki et al. [32] using
the model potential of Ashcroft, Suzuki et al. did not use any correction for exchange
and correlation in the dielectric screening. The exchange and correlation will influence up
to three Fuchs’ third order elastic constants which measure ‘the volume derivatives of the
second order elastic constants. Therefore all the Brugger elastic constants will:be effected
even though only three Fuchs’ elastic constants would be changed. '

Srinivasan and Girirajan [33] have used the longwave method to determine the second
and third order elastic constants of alkali metals. They have used the Heine-Abarenkov
and Wallace potentials with different exchange and correlation corrections. In this paper,
a calculation of the third order elastic constants of Na and K, based on the method of
homogeneous deformation is presented. In view of the significant role played by exchange
and correlation in elastic constants, we have included the dielectric function in the
present calculation. The procedure used here is closely parallel to that of Suzuki et
al. except for the use of slightly different deformation parameters. The deformation tensors
used here are

P 0 o0 ATH42 ATI-1 A1
=0 ¥ 0 | aM)=31"[it-1 i142 Al
0 0y ATh—1 27 -1 aTh2

and
Lk +1). L= 0
ak) = K'P Lk =1 (ET+1) 0], (15)
0 0 f :

where deformations y, 4, k contract the lattice along the (001), (111) and (110) directions
respectively and expand it in the plane perpendicular to these directions so as to maintain
constant volume. In addition, we require a deformation defining a simple volume change
as a;; = v'/?5;; where v is the reduced volume v = ¥/V,. Thus the elastic constants are
determined from the derivatives of total energy with respect to the above mentioned de-
formation parameters and the Fuchs’ TOE (C,,,, C;;, etc.) thus obtained are converted
to Brugger’s TOE (Cy11, Ciy2, - €tc.) using the relations given by Thomas [34], we
have used the Hartree screening function corrected for the-exchange and correlation on
the lines of Sham [5]. The parameter r, in the model potential has been chosen to fit the
second order elastic constants to. their experimental values. The obtained values are

= 1.597 for sodium and r, = 1.748 for potassium. The calculations are extended to the
ﬁrst five sets of remprocal lattice vector. The value of « in a free electron energy is determined
through the condition dE/drs = 0 to assure the crystal equilibrium at the observed lattice
spacing. The band structure energy is found to make-a ‘small contribution to the second
order elastic constants but an indispensable contribution to the third order elastic.constants.
Besides. the dielectric function and exchange and correlation, the band structure energy.
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TABLE VI
Third order elastic constants (10'* dyn/em?) of Na and K as a function of core radius (a.u.)
Core radii Ciis ] Citz Cizs Cras Ciss. Case

‘Sodium’
1.50 —6.73 | ~-159 1 —221 —1.80 —1.37" ~1.61
1.55 —6.83 ~1.58 ~2.18 -~ 177 -1.39 ‘—1.63
1.60 -701 | —1.65 P e -1.81 —1.38 170
1.65 =71 | -17 ~2.31 - —1.95 -1.38 -1.81
1.70 ~740 | -—-1.96 -2.36 - =204 ~-1.37 —1.94

Potassium
160 | -3.62 ~0.45 —LI50 | —041 | -103 | ~107
165 | =370 ~0.49 ~1.08 | —043 —~102 | —1.08
1.70 —3.88 —0.54 | —~1.25 | -0.45 -0.99 ; =il
175 —4.09 l - =058 | =163 —0.48 ~098 | —~1.20
1.80 | —444 - —0.62 l —1.96 —0.51 —-098 | —1.28
1.85 | —4.87 [ - =070 | —232 | —0.56 -0.98 —1.38

mainly depends upon the model potential used. This model potential contains the core
radius as the only adjustable parameter. So it may not be out of place to find the effect
of the core radius on the individual third order elastic constants. The third order elastic
constants as the function of core radius are listed for sodium and potassium in Table VI.
It may be noted that the predicted sets of third order constants of Na and K have the
common features that the magnitude of C,,, is appreciably larger than that of other con-
stants. We also see that the maximum variation of elastic constants with core radius is
observed for C,, and minimum for C,44. The calculated values, except C,,4 of K, are
found to be in reasonable agreement with theoretical calculations of Suzuki et al. and
Srinivasan and Girirajan. However, no exact conclusion can be drawn as there are no
experimental data available for Brugger’s third order elastic constants of alkali metals.

The authors are thankful to Professor Vachaspati for encouragement. We are also
thankful to the authorities of the computer center I I. T., Kanpur for providing the I.B.M.
7044/1401 computers.
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