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The electronic properties of a collection of small metal particles are determined by the
distribution of their discrete ulectronic energy levels. According to Gorkov and Eliashberg,
the concepts of the Random Matrix Theory may be applicable to the problem of the energy
level distribution in small metal particles. In this paper we use the Gaussian ensembles instead
of Dyson ones. This enables us to obtain 3-level correlation functions. The approach makes
possible an extension to a wider temperature range for previous results of the specific heat
and spin susceptibility due to Czerwonko.

1. Introduction

Small metal particles have unique physical and chemical properties, different from
those of the bulk metal [1]. The physical properties of metals depend characteristically on
their excitation spectra. In a bulk metal the thermal broadening of electronic levels effecti-
vely produces a continuous spectrum. The energy levels, however, are expected to be
separated for small particles when the average spacing d between levels is much greater
than the thermal energy kT. For a finite system the average spacing é between single-elec-
tron states is of the order Ep/N, where Ep is the Fermi energy and N is the number of
conduction electrons. The separation of energy levels should occur for particles of diameter
less than 100 A and temperatures below 10 K. Under such conditions, at temperatures
so low that only a few electrons are excited above the Fermi level, the statistical character-
istics of the spectrum have a direct influence in determining the partition function Z and
thermodynamic properties derived from it. The exact counting of the possible electron
excitation leads to the difference in behaviour between particles with an even and those
with an odd number of conduction electrons. As the thermal energy kTbecom es large,
compared to the average level spacing 8, the even-odd effects as, well as the discrete nature
of the spectrum, are washed out.
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Thus, to calculate the thermodynamics of a collection of small metal particles at low
temperatures, one needs the distribution of energy levels about the Fermi level. In the case
of a perfect metallic sphere, the distribution of energy levels is not difficult to obtain;
the degeneracy in magnetic quantum numbers due to spherical symmetry is proportional
to N3, However, the electronic energy levels of experimentally produced small particles
are seen to be random. Kubo [2] argued that the random character of the spectra arises
from surface irregularities which remove degeneracies or any other systematic spectral
property which could be present in a particle of regular shape. He assumed a completely
random distribution for the energy electron levels, to which corresponds a nearest-neigh-
bour spacing distribution of the Poisson type. Gorkov and Eliashberg [3] using the same
qualitative argument as Kubo, considered the concepts of the Random Matrix Theory
for nuclear level fluctuations to. be applicable to the small metal particle problem. They
assumed that surface irregularities of the order of atomic dimensions would lead to a Ha-
miltonian matrix with random elements, when expressed in a single-electron basis. The
electronic energies necessary to compute the partltlon funotlon Z are the elgenvalues of this
Hamiltonian matrix. . :

The problem of random matrices was further consxdered by Dyson [4, 5] who showed
that the general symmetry requirements provided for a classification into three groups
corresponding to respective ensembles of Hamiltonians. For small metal particles the
orthogonal ensemble applies when spin-orbit coupling of the conduction electrons is
weak and time-reversal invariance holds. The symplectic ensemble describes the case
of strong spin-orbit coupling with time-reversal invariance. The unitary ensemble is used
for the case of large spin-orbit coupling with no time-reversal invariance, i.e., in large
magnetic fields. The criterion that the field or couphng is strong or weak is given by com-
parison with the average level spacing 8.

Czerwonko [6, 7] obtained the extension of Kubo’s and Gorkov—Ehashberg s results.
He derived the analytical and numerical formulas for specific heat and spin susceptibility
of a collection of small metal particles in two limiting cases: for § much greater than kT
and for § much smaller than k7, i.e., at low and high temperatures, respectively. At low
temperatures he used the 2-level correlation functions of the Dyson ensembles for averaging
the thermodynamlc properties over the statistical distribution describing the levels in the
collection of particles. It has been shown in [8] that the results of Czerwonko are in accord-
ance with the numerical results obtained later by Denton, Miihlschlegel and Scalapino [9).

In this paper we use the Gaussian ensembles instead of the Dyson ones [10, 11] to
describe the distribution of energy levels in small metal particles. For these ensembles
we can obtain the 3-level correlation functions necessary to extend the low-temperature
results of Czerwonko.

2. 3-level correlation functions

Acéording to quantum mechanics, the énergy levels of a system are described by the
eigenvalues of the Hamiltonian operator. The problem of calculating the eigenvalues of
Hamiltonian operators qof complicated systems, for which the eigenvalue equation car-
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not be solved, was considered in nuclear physics. Wigner [12] first proposed to describe
the energy levels of a complex nuclear system statistically as the eigenvalues of a
random matrix. The Hamiltonian of a single nuclear system is represented by a matrix
for some set of basis states, and in turn an ensemble of matrices would correspond to
an ensemble of possible nuclear systems. The elements in the matrices are randon
variables whose distributions are restricted only by the general symmetry properties
imposed on the ensemble of Hamiltonian operators. The possible ensemble of randon
matrices corresponding to various symmetry requirements can then be diagonalized to
yield the respective distribution of ordered energy eigenvalues.

It has been shown by Dyson that there are three basic groups of canonical transfor-
mations relevant to quantal systems, viz. the orthogonal, the symplectic and the unitary
ensembles. In addition to the symmetry classifications, there are two main classes .of
ensembles: the circular [4] and the Gaussian [I3] version of these ensembles. One should
note that the assumptions underlying the derivations of the energy eigenvalues are different
for these two classes. Dyson’s ensembles need only one hypothesis which is loosely connect-
ed with the Hamiltonian, while in the Gaussian ensembles one uses two hypotheses con-
nected directly with the Hamiltonian matrix. The circular ensembles of Dyson are estheti-
cally more satisfactory, on the other hand, the Gaussian ensembles have some remarkable
propertles Namely, approximations in the Gaussian ensembles for high dimensions lead
to results which are identical with the exact results in the circular ensembles for hlgh
dimensions. It has also been found empirically that level spacing distributions, for small
spacings, computed in the Gaussian ensembles, are nearly independent of matrix dimen-
sions. Even working in two dimensions one obtains for the nearest-neighbour spacing
distribution which does not differ very much numerically from the infinite results [10].
Hence it is very useful to obtain results for low dimensional matrices in the Gaussian
ensembles. The information on the level spacing distributions obtained in this way may
be a good approximation of the exact results in the circular ensembles.

The joint probability distribution function for the eigenvalues of matrices from the
Gaussian ensembles [11], is given by

B N
PNv(,g!a E‘ﬁ’ N) = CN'y ;gj*gklj €Xp (" ';' 8?) . (1)
J<k Jj=1

It gives the normalized distribution of N ordered eigenvalues for the three ensembles, obtai-
ned by diagonalizing the matrices in each ensemble, where y = 1 if the ensemble is orthog-
onal, y = 4 if it is symplectic and y = 2 if it is unitary. The constant Cy, is chosen in
such a way that the joint probability function (1) is normalized to unity. Each pair of
eigenvalues in the formula above displays a level “repulsion”, which expresses the fact
that an accidental degeneracy is very unlikely; the perturbations represented by the off-
-diagonal elements in the random matrices will split apart any eigenvalues which approach
one another.

The probability of finding a level (regardless of labelling) in each of the unit intervals
around the levels ¢, ..., &,, when the position of the remaining levels is unobserved, is
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measured by the n-level correlation function

+ o0 +w
Ry (g, ... = tm [ ... | Pyfey, ..., ex)deys s ... dey. )
N-ow ~w -~
Because the position of the absolute level is irrelevant, the n-level correlation function (2)
may be expressed as a function of the (n—1) level spacings 4; = ¢;,.; —¢, i =1, ..., (n—1).
Thus R,,(4,) represents the probability that two successive levels are separated by an
energy 4,, Ry, (4;,4,) — the probability that three successive levels have the relative
spacings 4, and 4,, etc. For the nearest-neighbour spacing distributions R,,(4) the exact
numerical results as well as the asymptotic form are known. Moreover, the Gaussian
ensembles give the same results as the Dyson ones for N — oo. In the limit where 4 is
small compared with the average level spacing J, the orthogonal, unitary and symplectic
distributions vanish as various powers of 4/§ = x reflecting the level repulsion effects

2 2
4

Ry() = Zx, Rp() = 53 Ryu() = Hpn's” ®

The exact solution of a general spacing distribution R;.,(xy, ..., X, ) is very difficult
to calculate, since the limiting behaviour resulting from integrations taken over Py, (e, ..., &y)
must be determined. For the spacing distributions with more than one spacing variable,
the exact result is only available for Rj,(x;, x,); Metha [11] has presented a numerical
tabulation of this function for a limited range of the variables. Therefore, it is necessary
to obtain simple approximations to the exact formulas. As has been noted by others
[10], useful approximations to the exact nearest-neighbour spacing distributions (3) are
obtained by taking N = 2 in Py,(e;, ..., &y), changing variables to the spacing between
the two cigenvalues and integrating over the remaining variable. The generalization of
this procedure may give approximate formulas for the more complicated distributions [9].
We obtain the approximate formulas for R;,(xy, x,) in an analytical way.

In order to obtain the approximate distribution of # spacings, the joint probability
density function (1) is restricted to the smallest number of levels needed to have » spacings;
thus one uses Py, 1y,(e1, -++» €4+1)- The variables of the (n4-1) successive levels are changed
to n spacing variables given by 4; = &;,;—¢, 1 = 1, ..., n, with the energy variable &,
remaining. Integration over this variable produces the spacing distribution from the eigen-
value distribution

+ o0
Rur1p(dys s 4y) = 5 de P 1yy(e15 Ay -oos 4p). C))
The distribution (4) satisfies

6[ dAl “oe (')" dAnR(,H.l)y(A], vees An) == 1'

The average values of A; here are generally different, while the average values for the
exact spacing distributior are equal. By scaling the variables 4; in terms of their average
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values 4; — A4;/A; = x; we can obtain the properly normalized distribution Rips1y,(%1, -5 %)
which then satisfies

Sy 8

w0
.»_Y.i = dxl s j dxnxiR(,,+1)y(x1, aey xn) = ]
0

and

g dxl z‘). dan(,,+1)7(x1, coog x") = 1. (5)

For the calculations of R,,(x) one sets N = 2 in the joint probability density func-
tion (1), with spacing 4, defined as 4 = 4, = ¢,—¢,. By integrating over ¢, from —oo
to 400 one obtains the spacing distribution (4) in the form

7+ —-1
Ry (4) = S l:r (y—;l)] A" exp (- % Az) , (6)

where I' is the gamma function. In order to scale 4; — X; we compute the average values
4, for the different ensembles

-1
e (e

Then one obtains the properly normalized approximate distribution which satisfies (5)

expressed as
p+1 2 -
[r (1+ %)] ‘ r(1+ %)
IRAS ) =97 i Texpd — | - (1 +—) XL (8)
If ——
2

X" €Xp
1 y+2
()
2

Hence in the limit where x < 1, the orthogonal, unitary and symplectic distributions are
given by

7 32 1
Ry(x) = 7 X,  Ry(x) = p x?, Ryu(x) = (%)6 ;t‘s x*. (9)

The coefficients in the exact spacing distributions (3) and in the approximate spacing
distributions (9) have a small relative difference of a few percent. One obtains errors of
order 4.5%, 1.5% and 0.5% for the orthogonal, unitary and symplectic ensemble, res-
pectively.

For the calculation of R;,(xy, x;) one sets N = 3 in the eigenvalue distribution (1)
with spacings 4, 4, defined as 4; = ¢, —¢;, 4, = g3—¢,. By integrating over ¢; from
—00 to +oo one obtains the spacing distribution (4) in the following form

: . Y
Ryy(41, 42) = C3,[4,4,(4; +4,)F eXP[* 3 (Af+A1A2+A§)]. (10)
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This spacing distribution is symmetric in the variables A, 4,, hence the average values
4y, and 4,, obtained from this distribution are the same and 4, = 4,, = 4,. Defining
a transformation

Ay = u(l=v), 4, = vu; §8))

we find that the set {(4,, 4,):4, >0, 4, >> 0} is mapped onto the plane subset bounded
by the lines v = 0, u = 0 and v = 1. The Jacobian of this transformation is u. In terms
of these variables we find the expressions for the normalization constant C . and for the
average values 4,. For example, for the orthogonal ensemble (y = 1) we have

. 1 o ) ~ ‘
(Cs) ™' = Jo(l—v)dp | u* exp [— L u* (L —v+0%)]du, (12)
0 0
and
N 1 w
4, = Cyy [v*(1—v)dv [ v’ exp [ u*(1 —o+1?)]du. (13)
0 0

Performing the integrations in (12) and (13), we get

_ 27
and A1=\/~-~—. (14)

dr

Analogously, for the unitary (yII: 2) and for the symplectic ensemble (y = 4), we obtain

@ ol el (15)
= —— an s = e, .

S T NG

o=t A d, = BU—1 2y (16)
AR TR R e S L CTOV A L

Now we can compute the properly normalized approximate distributions Rj,(x,, x,).
In the limit where 4,, 4, are small compared with the average level spacing, we obtain
(from (5) and (14)-(16)) the following expressions for the orthogonal, unitary and symplectic
ensemble

.
Ryi(xy, x3) = 5573 X Xo(%1 +X5),

J3

- [x,%(x +3,)F,

R; (%, X5) = (%)23 3

Q]

3
Ry4(xy, X3) = (%)40 3;\/ g (]3”37)1410- 1‘13[’51‘3‘52(% +x2)]4. a7
‘T
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The coefficients in the exact spacing distribution (given by Mehta [11])
, n*
Rj1(xy, X3) = i X1 %5(X1 +%X2),

and in the approximate spacing distribution Rj;(xy, x2) obtained above, have a small
relative difference of 1.8%.

3. Thermodynamic properties

To calculate the thermodynamics of a collection of small metal particles, one must
also use the appropriate partition function. For the orthogonal and symplectic ensembles
the partition function Z in the following form (given by Kubo [2]) is suitable

Z=~—3€ H(1+ze“h ‘*Ek)H 1+ et ﬁ€'> ' (18)
27i i

it

where « is equal to 1 or 0 for particles with an even or odd number of conduction electrons,
respectively; i = L gfuyH, g is the Lande factor of electrons, pp is the Bohr magneton
B = (kT)* and the magnetic field H is set equal to zero. In the partition function, the
energy levels ¢, and & are ordered with respect to the Fermi level &y, where g refers to
excited electrons above ¢, and ¢} refers to holes created in the levels below g,. The ground-
-state energy is chosen to give g, = 0. In the case of the unitary ensemble, the partition
function Z, for a spinless system [9] is appropriate and can be obtained from the Kubo’s
partition function Z in the following form

1 (d . . iy S
Zo=— o I I (L+ze %) I I (1+ —e‘/“'). 19
2ni J z z
k>1 1<0

Kubo has also presented an effective method of computing the partition function Zin the two
limiting cases of low and high temperatures. Czerwonko [6] has shown that at the extremely
low temperature, where only the level ¢, is significantly populated, for the specific heat
and spin susceptibility, the analytical formulas can be obtained. Following the method
of Kubo and Czerwonko, using the 2- and 3-level correlation functions of the Gaussian
ensembles, we can obtain the specific heat and spin susceptibility in a wider temperature
range. The experimental precision is not adequate for distinguishing between the orthogonal
and the symplectic behaviour of small metal particles [14] and we will not investigate the
case of the symplectic ensemble.

Analogously to results obtained by using the 2-level correlation functions of the Dyson
ensembles [6, 8], when R,(x) is the correlation function of the Gaussian ensemble, the
specific heat of particles described by the orthogonal ensemble is given by

C & [ i kT\? kT\?
< k>‘ 2,32 6ﬁ2_[dXR21(x) In(1+e7%%) = § n{(3) (-5—> = 16.99 (—(3“)1 (20)
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when the number of conduction electrons in a particle is odd. When this number is even
we have

92
k

*
=-ﬁ2;(5B3 fdezl(x) In (14 a’e P9 4 ¢ 20%%)
0

o

2 n+1 2 2
B kT kT
=%n{—7; ImA+in® A+4 E (—1)" — }(_5“> = 28.86 (?), (21)

n=

.. T . .
where (...)> denotes the statistical average, R,;(x) = Ex,é’ is the zeta function

a = 2 cosh fugH and A, B satisfy the equations 4B =1, 4+B = 4 for H = 0.

In the case where the unitary ensemble describes a system with a large spin-orbit
coupling in a sufficiently large magnetic field, there is no longer any energy level degeneracy.
The previously two-fold degenerate levels with average level spacing § are split apart.
This produces a system with average level spacing 6" = 45 and there should be no longer
any even-odd distinction. For particles described by this ensemble, we get

s 2 &
O _p 2 fde.,_z(x) In (1467 = (’8‘> e (@)
B n 0
0

k

kT\’
= 5.89 x 10? <~5—) N (22)

Ik L
where Ry,(x) = — x“ and 6 = 6.
T

The spin susceptibility for the orthogonal ensemble, when the number of conduction
electrons in a patricle is odd, is given by

{01 5 o 0
S = In(2cosh fugH) = L —, 23
Ip 2#123ﬁ 6H2 n( 08 ﬁﬂB ) 2 kT ( )

2 2
where yp = —?3 is the Pauli spin susceptibility; when the number of conduction electrons

in a particle is even, we have
€W
s 0
s = 325 B jdx.RZI(x) In (1 +a%e P o720
/4
P HB .

2 = ]
L2 P n wi1 B ET kT
= — Ll 4+ — -2 g S (A i G ¥ iy 24
\/3{2 n® A+~ (=D 5 3 (24)
n=1

where 4 = 2+./3, B = 2— /3 from equations 4B = 1, 4+B = 4 and a = 2 for H = 0.
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The next order of the specific heat approximation for the orthogonal ensemble is
given by

1

1
5-38% (kT\® (ds (dt
(©: = _<_*> Ji 7lnsln Hin s+1In 1)
s
0

k 2*a* \ ¢
1 t L+ s+t+st(s+1)+a’st+s°t kT\’
g LESESL L dds+tesistna’s S—}=389.48<—> L en
U7 (s) (1 +s0) (+s) (1+1)

when the number of conduction electrons in a particle is odd; when this number is even
we have

1 1

(Cy,  5-3°(kT\’ [ds [di ‘
. = 3 5) ; 71nslnt(lns+lnt)
. 0 0
( 1+a’s(l+t+st)+s*+s> , - kT\?
<21 —In(l+a’st+st")py = 3049 — |, 26
X l n T a%s1s? n(L+a’st+s7t%) 5 (26}

where s = exp (—fdx,), t = exp (—Bdx,), a = 2 for H = 0 and we have used the 3-level
correlation function R;,(x,, x,) obtained in the Gaussian ensembles (17). For particles
described by the unitary ensemble, we have

1

1
C 323 J3/kT\? (ds (dt
< >2=_\L<“) J—f 71112.91n2t(lns+1nt)2
s
4]

k 287 \ 5

L+s+st kT\®
x 4200 pn (raenl = 545% 105 (22 @7y
1+s )

where s and ¢ are the same as above, and we have used the 3-level correlation function
Ri3y(xy, x,) from (17).

The spin susceptibility in the next order of approximation, for the orthogonal ensemble
is given by

1

1
0, 37 (kT\* (ds (dt
=_(_2n_)3<_5_> ——JTInslnt(lns+Int)
8

Xp N

2 st s (28)
s+ +(1+4ds+5Ht+(1+s) 5 )



332

when the number of conduction electrons in a particle is odd; when this number is even
we have

7
§%= _(_23;)_< ) Fl.sfo 2 i s In #(fn s+1n £)

st (1+5) (1 +5%)—st* st ) kT\*
A e , )= —268 . 9)
1+4s+s st +4s(1+s)t+(1+4s+s ) 1+4st +52t 3

where s = exp (—pdx,), t = (—pdx,), xp is the Pauli spin susceptibility and H = 0.
In this order of approximation the integrals were calculated numerically.

Taking into account the results obtained in the first (20)~(24) and in the second (25)~
—(29) order of approximations, we get the low-temperature behaviour of the specific heat
and spin susceptibility of electrons in small metal particles expressed as

{CD, KT\ | (kT\®
~—2 = 16.99 +389.48 [ — ),
k 5 B

(C>, kT\? kT\®
= = 28.86 e +304.9 = (30)

5 KT\
Do _ 052 12336 (—— ,
Up kT .0

XDe kT
?—3643——268(\5) (3D

for particles described. by the orthogonal ensemble. The indices “0” and “¢”” denote the
cases of a particle with an odd and even numbers of conduction electrons, respectively.
For particles described by the unitary ensemble, we have

C kT\? kT\8
%} ~ 5.89x 10 (—5«) +545%10° (%) . (32)

! kT .
At this point it is not evident how large 5 can be for this low-temperature behaviour

to remain valid. The lowest order terms in expressions (30)-(32) have the range of validity

KT o1
5 il

The author is very grateful to Professor J. Czerwonko for suggesting this problem and
for helpful discussions.
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