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THE WAVE POTENTIAL OF MIYAMOTO AND WOLF
FOR AN ELECTROMAGNETIC FIELD IN A GENERALIZED
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(Received June 5, 1978 final version received July 4, 1979)

This paper contains the wave potential of Miyamoto and Wolf for an electromagnetic
field in a generalized uniaxial anisotropic medium. The wave potential of Miyamoto and Wolf
is of fundamental importance in Kirchhoff’s Diffraction Theory. This gives a possibility
of presenting the diffraction field in agreement with Young-Rubinowicz’'s model.

1. Introduction

In this paper, which is an extension of the work by Petykiewicz and Rynkowski [1],
we consider a medium that can be defined by a dielectric tensor, &, and a magnetic permeabil-
ity tensor, . These tensors have a property that the tensor
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is the uniaxial anisotropic one where u~! is the tensor inverse to the magnetic permeability
tensor.
We have assumed the coordinate system: x,, X,, X3 in which the axes of the system

are the principal axes of the tensor . This can be represented as:

7 = pol + (e —yo)kk, (1.2)

where T stands for a unit tensor and kk for the dyadic. The unit vector k lies in the direction
of the x;-axis, which corresponds to the optical axis. The principal constants
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are described by ¢; and y; which are the principal constants for tensors  and Ji, respectively.
We assume that the principal axes of these are the same and
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In this work the SI units used are ¢, and pu, which stand for the dielectric constant
and magnetic permeability of the vacuum, respectively and
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where @ defines the time dependence of the field: exp (—iwt).

The Larmor—Lorentz principle was used as the basis for this report, since it enabled
us to express the state of the monochromatic field at point P by values of the field and its
derivatives at all points Q at the surface surrounding the point considered.

This principle has been widely recognized by Maue and Westfahl [2] discussing the
isotropic medium, while for the anisotropic medium it was formulated by Wiinsche [3].

We can write the Larmor—Lorentz principle for the generalized uniaxial anisotropic
medium in the form

E, = §df{—GxE) i curl GP+Hx G- p~" - curl B}, (1.62)

Hy = §df{+GixC™) &' curll H—(ix H) -5 ' - curl G}, (1.6b)

where the subscript j = 1, 2, 3 refers to the particular components of the field. The evident
feature of the vector G$® (or G®) is the j’s column of tensor G® (or G*)
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In the uniaxial anisotropic medium, we can resolve any arbitrarily polarized incident wave
into two waves, one of which is a wave of the TE-type and the other — a wave of the
TM-type. This division is taken with regard to the distinguished axis of anisotropy, which
is the x; axis (see-Kujawski and Przezdziecki [4]).
The evident feature of the vector H for a wave of the TE-type satisfies the equation
! 62H+1 62H+1 62H ~kgH 1.9)
gy 0x* i eps 0y 0 ey, 02° CE i
The evident feature of the vector E for a wave of the TM-type satisfies the equation
1 9 . 1 8 1 &
gatty Ox2 7 egpy 02
(see Przeidziecki [5]).
We want to show that the formula (1.6) can be transformed into

E; = §n-curl WPdf,
H; = § n - curl WPdf, (1.11)

o a2 E = —kyE; (1.10)
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where the vectors W and W™ are the j’s columns of the tensor potentials for an electro-
magnetic field in the medium examined.

The method applied in this work is similar to that used by Petykiewicz and Rynkowski
[1], who only considered the case of the uniaxial electrical medium.

We resolve any arbitrarily polarized incident wave into two waves, one of which is
a wave of the TE-type and the other’s a wave of TM-type

E=E"4+E™, H=H®+5™, (1.12)

and every case of the field TE or TM can be treated separately

a) in the case of the incident of the field of the TE-type, we find the field ﬁl (using
the expressions (1.6b)) and the suitable electrical field is computed using Maxwell’s equa-
tions,

b) in the case of the incident of the field of the TM-type, we find the field Ej (using
the expressions (1.6a)) and the suitable magnetic field is computed using Maxwell’s
equations:

The arbitrary field is found by superposition of these two fields, which can be written
in the form:

3-

EP) = Bu(P)+ —— " curly A, (1.13)

- Woéo



2. The Kottler’s formulation of the Larmor-Lorentz principle

In this paragraph we present the transformation of the Larmor—Lorentz Principle (1.6)

to the form (1.11) and to obtain the tensors of wave potentials W and W,
When the field in the medium is of the TE-type, the Larmor-Lorentz Principle gives
us the magnetic fleld H; at point P in the form:

Hy, = § df{ﬁTE- (n xg_l - curl G}H))“éfm “(n xg 1. curl H™®)}, 2.1

where the subscript / = 1, 2, 3 defines the different components of the field. The evident

feature of the vector G{' is the I’s column of tensor G (see formula (1.7)).
When the field in the medium is of the TM-type, the electric vector of a field Ey at
the point P can be expressed using the Larmor-Lorentz principle in the form:

Eg(P) = §df{—~xE™) - i~ curl G+ xGP) -5t -cul E™),  (2.2)

where the subscript / = 1, 2, 3 defines the different components of the field and the evident

feature of the vector G{® is the I’s column of tensor G® (see formula (1.7)).
We can write the expressions (2.1) and (2.2) using the common vector identities in
the form
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In the case of lack of lines of discontinuity on the integration surface, all integrals in the
expression (2.3a) and (2.3b), which have the integrand from 7 - curl... equal to zero and
the field at the point of observation P can be expressed by the formula:
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When the lines of discontinuity appear on the integration surface, as in the case of diffrac-
tion of a field of the TE-type on the object with the edge (see Kirchhoff’s theory of diffrac-
tion [7]), then the field of the TE-type at the point of observation P will be

k R "’ = - 3 - k R
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For the case of the TM-type, we obtain:
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The expressions (2.5a) and (2.5b) are connected with Kottler’s formulae [6] which have
been formulated in Kirchhoff’s theory of diffraction of the electromagnetic waves for an
isotropic medium,

The expressions (2.5a) and (2.5b) are extensions of Kottler’s formulae for an aniso-
tropic medium and for the uniaxial electrical anisotropy are equivalent to those derived
by Petykiewicz and Rynkowski [1].

Kottler’s form of the Larmor-Lorentz principle is very useful in Kirchhoff’s theory
of diffraction, since it provides a very simple interpretation of its results according to the
Young-Rubinowicz [7] model of diffraction phenomena. This is mainly due to the fact
that Kottler’s form of the Larmor-Lorentz principle permits one to obtain in a very simple
way the wave potential of Miyamoto and Wolf [8], which in turn is the basis for this model.

3. The tensor potential of the Miyamoto and Wolf type

By introducing the tensor potential we can present the Larmor-Lorentz principle
in the form

EMP) = §§ff 7 - curl W, ™df (3.1)
if the incident field is of the TM-type and in the form
H(P) = § 7 - curl W,"™df, (3.2)
S

when the incident field is of the TE-type.



The integrands in (2.52) and (2.5b) are already partially presented in the required form
while only the integrals (2.4a) and (2.4b) should be transformed. But in this case we use
the results of [8], and these integrands can be shown in the forms
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The tensor &1/ (or 21/2) has a property that au2 302 L (or ﬁuz -fL”Z = ).

Thus, when the electromagnetic field is of the TM-type, then the explicit expression
of the potential for /-component of field can be written in the form

W™ = P 4R, (3.6)

where ﬁ, is defined by (2.5b). When the field in the medium is of the TE-type, then the
explicit expression of the potential for the /-component of the field is given by following
expressions:

W = §,+ W, 3.7
where §, is defined by (2.5a). The above formula may be interpreted in the Young-Rubino-
wicz’s model of diffracted phenomena [9]. This model gives a possibility to present the
diffraction field as a superposition of the so-called diffracted waves arising as a result of
the reflection of the incidence field from the edge and the so-called geometrical waves.

By introducing the tensor potential into the Larmor-Lorentz principle integral,
we can present the results of Kirchhoff’s diffraction theory as the sum of the curvillinear
integrals

™(P) = §3WTM ds+Y § W™ - ds (3.8)

i Ci

in the case of the field of TM-type and as
H™(P) = §WTE ds+Y § W™ - ds (3.9

i C;

for a field of the TE-type.
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The first of the integrals is taken along the diffracting edge D (diffracted waves) and
the remaining integrals are calculated around the singular points of the potential W™
(or W™) lying on the integration surface (geometrical wave).
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