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A mixture of quantum liquids was investigated microscopically. The spectrum of
collective excitations at finite temperature was determined. The form of this spectrum dem-
onstrates whether there is a stability or stratification of the mixture. The influence of
a relative motion of liquids on the spectrum was considered. It was demonstrated that
beginning with some finite momentum, the spectrum of each component of the solution
splits into two branches, one of which continues the spectrum into the single-particle region.
The dynamic susceptibility, the dynamic form-factor, the coefficients of compressibility and
the structure factor for the mixture of two Bose liquids were obtained. The integral relations
that generalize some rules concerning the binary Bose solution was established.

1. Introduction

Much attention is given recently to the study of the mixture of quantum liguids.
Usual object of these investigations is a He3-He* solution which is usually considered in
hydrodynamic or thermodynamic aspects [1, 2]. The microscopic foundation of the hydro-
dynamic equations was done by Galasiewicz {3].

The investigation of mixtures of Bose liquids is of special interest. This interest is
stimulated by the fact that at a temperature of 2 mK the Fermi helium changes to the
superfluid state [4, 5] resulting from the Cooper pairing of fermions. Therefore, at very
low temperatures the He3-He* solution is the mixture of two Bose liquids. In such a mix-
ture, as was shown by Khalatnikov [6], the sound waves corresponding to the concentra-
tion oscillations also should appear beside the usual sound. The sound velocity of these
oscillations in the case of superfluid He3-He* solutions at zero temperature was also in-
vestigated [8, 9].

The other examples of quantum Bose solutions are the mixtures of He* and HeS,
mesons in superdense matter, Cooper pairs of nucleons in the nucleus, the mixture of
atoms of orthohelium and parahelium and the mixture of molecules of ortho-Hydrogen
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and para-Hydrogen. Neon occupies an intermidiate place between quantum and classic
substances. Thus, the liquid mixture of isotopes of neon also needs the quantum-mechanic
description.

Considering the polycomponent liquid, one must remember that it does not always
exist as a uniform solution. Under certain circumstances the mixture can stratificate.
The thermodynamics of the stratification of dilute Fermi-Bose solutions was described
[2, 10]. It is possible to judge about the stratification of a mixture having arbitrary con-
centrations by the behaviour of the collective-excitation spectrum. Furthermore, the
character of the collective spectrum provides an opportunity to examine the instability
of the mixture under finite perturbations. The microscopic conditions of the stratification
of superfluid liquids at zero temperature were obtained previously [11] in the Bogolubov
and long-wave approximations.

In this paper we investigate in the pseudo—potentlal approximation the stability and
the stratification of a mixture of normal quantum liquids at a finite temperature and also
under the relative motion of components. We also analyse the special characteristics of the
collective spectrum and the different dynamic characteristics of the mixture.

2. Polycomponent liquid

When describing the uniform polycompone_nt system in equilibrium we easily are
able to find the individual spectrum for the particles of each component

wik) = k*[2m] + Zy(k, ) -, €y

where the index enumerates the types of the particles, & is the momentum, m? is the mass
of the particle, 2; is the self-energy and p; is the chemical potential.

We shall use here the causal Green functions, that is, the so-called propagators. If the
spectrum (1) is real, these functions in the momentum-energy representations have the
form

1+ni(k) ni(k)

Gk,w) = ———— F - , 2)
(k, ) w—a)i+i0+a)——co;—-i0 (

in 'which
ni(k) = [exp (Bop)F 117",  fi0 = 1 3)

and 0 is the absolute temperature.

Seeking approximate expressions for the self-energy of a dense liquid, one cannot
utilize the theory of perturbation based on the concept of free particles. But it is possible
to renorm the interaction of particles by constructing the effective potential which permits
the expansion of the self-energy in powers of that pseudopotential [12]. A number of
diverse theoretical ard empirical methods of constructing the effective potentials are
widely used in the theories of liquids, crystals, metals, and in brief, in all cases where one
deals with systems of strongly interacting particles [13-18].



291

We shall not concentrate here on the interaction pseudopotential ¢;;(r, @) in which r
is the modulus of the Cartezian radius-vector r. Let us suppose that such a pseudopotentlal
is constructed and that it has the Fourier transform ¢, ,(k ).

The set of variables {r, t,1}, where 1 is the time, will be designated further by one figure.
Using the Schwinger variational procedure we can derive the equation for the self-energy

2(12) = 5(12) [ ¢(13)n(3)d(3) +i j ¢(1‘3)G(14)1"(423)d(34), 6]
where _
n(l) = +ilim lim. G(12) (ty = t;—1,),

21 1432—>—0

I(123) = 5(12)6(13)+ f —5—% G(46)G(75)I'(673)d(4567). )
We investigate here the mixture with no chemical reactions so that the number of particles
of each component is constant. Therefore, the propagator is diagonal with respect to the
component indexes: G;; = J;;G;. From Eqs. (4) and (5), it 1s clear in this case that the self-
-energy is also diagonal: Z;; = 6;;Z;. For example, the self-energy in the pseudo-Hartree
approximation is
XXk, @) = lim lim Z ¢U(k w)n; 6)
k=0 00
and n; is the average density of the particles. If the pseudo-potential is not a function of
the propagator, then the pseudo-Fock approximation for the self-energy becomes

Ik, 0) = 29+ f i(k—k', 0—"GXK', ")k do, ¥

@n)*

where X is the same as that of Eq. (6), and G} is the propagator with this self-energy.
In the next approximation

1 i) 5 ;
i (k, ) = Zi(k, )~ P f [Gulk—K', 0—0") L du(—K, ~o)]

x k', 0GHk—K, - )GHK', o' )GHE' =K , 0" —)dK' dk" dow'do"”. (8)
It is known that the self-energy for He*-He* mixtures can be presented in the form

Z; & X)+y/k?/2. One can obtain such a form by expanding Eq. (7) or (8) in powers of k.
In such a situation for the spectrum (1) we have

wik) = K*[2m+ 20—, my = mP(1+mi’yy). )

But the spectrum in the pseudopotential Hartree approximation has the same form only
if the mass of a particle m, has been replaced by the mass of a quasiparticle m;. We shall
further state that the pseudo-Hartree approximation has an effective mass of m,.

When the interaction is instantaneous, that is, when

bi(r, ©) = $i(r) lim ™',
' 7= +0
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and spectrum (9) is real, then from Eq. (2) and the representation
Gi(k, 0) = Plo~w)™ ' —ia[1+2n,(k)]6(w—w),

in which P is the symbol of the principal value, we can integrate over the frequency w
in the expressions of the self-energy and different macroscopic averages. For example,
in this situation instead of (7) we obtain

1 =
Zi(k, o) = 37+ P 1 (k) ule— K )dk’

and for the internal energy density we obtain

[ R A

@ =>Z n;, ki2 = 3m?935/2(0‘i)/ni)~i3,

o wx"'ldx - o

- | = +1)y7 =

80 = o [ S = > @0
o

%; = CXp [.B(Mi—):?)]: Ay = \/27T/m?0 s

where

I'(n) is the gamma function.

3. Dynamic susceptibility

The collective spectrum of a system can be found by studying the poles of a dynamic
susceptibility, Dealing with the Bose liquid we shall not isolate the Bose-Einstein conden-
sate because its existence, as is well known, has a weak influence on the form of the collec-
tive spectrum. This will be verified again below. And more important, the isolation of
the condensate with the application of Bogolubov approximation [19] or low-density
one [20] leads to the fact that the sound velocity in the system becomes proportional to
the square root of the number of condensate particles and thus must be zero at the tempera-
ture of the condensation. But the sound velocity should be proportional to the square
root of the full density. A more detailed discussion of this problem has been published
previously [21-23].

After shifting the self-energy with the infinitesimal source (£ — X +4), we can define
the response function as the variational derivative

7(123). = §G(12)/84(3). {1

After the variation in the equation of motion we can get the equation for function (11)
, 52(45)

x(123) = G(13)G(32)+ | G(14)G(52) 5G(67) x(673)d(4567). (12)
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Putting into Eq. (12) the self-energy in the pseudo-Hartree approximation, we find that

2(123) = G(13)G(32)+i | G(14)G(42)p(45)x(553)d(45), - (13)
and in the pseudo-Fock approximation
x(123) = G(13)G(32) +i | G(14)$(45)[G(42)5(553) £ G(52)x(453)1d(45). (14)
Going from Eq. (11) to the two-point function
¥(12) = +ilim lim x(132) (15)

31 t3=t3+0

and introducing the polarization function

I(12) = +ilim  lim G(12)G(23), (16)

3—=1 t3—=t1+0
we obtain from (13) that

2(12) = I(12)+ [ I(13)p(34)x(42)d(34). (17

Reverting to the momentum-energy representation instead of (16) and (17) we have
5i j ’ I4 ’ !
Ik, ) = +i (2—1)4 fGi(k+k', o +0)G(K , w)dk' do',
7
Xiflk, ) = II;(k, @)+ 1;(k, w) ‘12, Buk, 0)y(k, ). 18)

If the considered system consists of two kinds of particles, then the dynamic suscepti-
bilities given by Eq. (18) are

X11 = H11(1*H22$22) [(1—1711(511) (1"1722(}322)*17111722(7’%2]_1,
X1z = H11H22¢~>22[(1"H11<}311) (1"1]22‘}322)“17111722(3%2]—1, 19

where for the sake of brevity the arguments k and w are not written and it holds that
¢12 = ¢1. Using the mutual replacement of the indices in Eq. (19) we may obtain the
functions y,, and x,; = ¥12.

Let us think that the spectrum (1) is real which corresponds to the well-defined
quaisparticles. Then the polarization function is described by the formula

I _f [1£n(k+E)]n(k') N n(k+k') [l_ini(k,)] dk’
it = {a)—wi(k+k’, Y410 o—ak+k, k’)—iO}(Zn)s’

in which w,k, k') = w(k)—wk’). We are interested here in the collective excitations
with a small attenuation. Therefore, we shall examine first the real part of IT,,, that comes
from the precedent expression for I7; the following:
ni(k+k')~ni(k') dK’
ok+k, )0 (2n)°
B [ ny(k) [0k +K, k)~ ok, K ~k)] dk

Jofk+E, K)~o] [0k, K ~k)~o] (2r)*

iy

Re I, (k, ®) = PJ
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Substituting the spectrum w,(k) in the pseudo-Hartree approximation with effective mass
into IT,;, we finally- derive that

Re ik, ) =

2 Op7.7 7
k*/m; f n;(k")dk 20)

@y J(o—Kkk[m)*—(K*2m)?

4. Collective spectrum

The distribution of particles n2(k) diminishes with an increase of k. This diminition
happens quickly enough in the case of Bose statistics and also for the Fermi particles
at high temperatures {241 or at a low concentration in a Bose liquid [25]. Consequently,
for these situations the formula (20) should be approximately equal to the expression

Ik, @) = (nik?[m;) [0? —(k*/2m)*] ™ (21)

.obtained as the result of the substitution of &' = 0 into the kk’, which corresponds to the
maximum of that distribution. Notice that the isolation of the Bose-condensate fraction
using the transformation n(k) — n.d(k)+n(k), where n, is the density of the condensate
fraction does not change the function (21). That is, the isolation of the condensate does
not lead to the essential change of the collective spectrum.

Let us rewrite Eq. (20) as the product

Re Hii(k, CO) d Hg(ks w)fl(k3 CO),

in which the factor
w*—(k*[2m,)* nd(k"dk'

T em PJ (o kK — (27 e

contains the temperature dependence. Because of the limiting relations

lim fi(k, ®) = 1 = lim fi(k, ©)
k= o

k-0

.one must conclude that Eq. (21) is asymptotically equal to Eq. (20) in both alternative
cases of low and high momenta.

Poles of the dynamic susceptibilities (19) dominate two branches of the collective
spectrum for which we have the implicit form

& = L [e2+el k(i —eD)? + 4ok ), (23)
‘where
8i2 = Si2k2+(k2/2mi)2> Siz = (”i/mi)ﬁgii(k)fi(k>8i)s
ely = s1ok%  siy = \/(-"1nz/";1m2)f1(ks_3i)fz(ks5 G 12(K).

To obtain the explicit function ¢.(k) we have to use the iterative procedure to the right
side of Eq. (23). However, the asymptotic behaviour of the spectrum can be found without
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such an iteration, that is in a general case only when @;(k) is limited. In the long-wave
limit two sound waves propagate

oi > iK% 5% = 4 [stHsiaVsi-sD+4sToli=or
and in the short-wave limit there are two single-particle motions
er = k*2m; (k- o).

Now we shall discuss the stability'of the collective excitations. The spectrum of stable
excitations must satisfy the conditions

sign Re g(k) = —signIme(k), [Im e(k)/Re e(k)] < 1.
We find from Eq. (23) that two stable branches of excitations exist in the system when
&1(k)e(k) > et ,(k). (24)

The instability threshold corresponds to the reduction of the inequality (24) to the equality,
which gives us an equation. for the threshold momentum

= 2V [misi(k) — m3s3(e)]> +4mimisty(k;) —misi(le) —m3sy(ky)}. (25)

When 8‘1‘2 = ¢262, only one branch survives: ¢2 = g2+¢2, and the second one, describing
the concentration oscillations, becomes zero;}éz_ =0. The disappearance of concentration
oscillations in a mixture means that the mixture stratificates.

To be definite let us consider that s? and sj; are real. Then three principal situations
are possible. The first occurs when s2(k)s2(k) = s%,(k) at all k. In that case, Eq. (25) does
not have any positive solution. So, there are two branches of the spectrum in the whole
of the momentum space. The mixture is absolutely stable. The other situation occurs
when s3(0)s2(0) > s1,(0) or, in the same situation when ¢, 1(0)¢22(O) > @2,(0), but begin-
ning from some k, s2(k)s3(k) < s7,(k). Then two branches exist in the interval 0 < k < k,
and only one in the region of k = k; up to k, given by the equation kp = 16n,m,mym, @3 ,(k ),
when the transmitted energy increases more than the interaction energy of particles.
Thus the system is stable with respect to the perturbations with momenta of k < k,,
but it loses the stability and stratificates under the action of perturbations with the transmit-
ted momenta lying in the interval k; < k < k,. Furthermore, when s%(0)s3(0) < s7,(0),
there is only one branch in the momentum space near k > 0. The instability of a system
with respect to infinitesimal perturbations means that the considered system does not
represent a uniform solution. The system is absolutely unstable.

The relative motion of mixture components changes the- collective spectrum and,
consequently, the stratification conditions. This means the normal (not superfluid) motion
due to external forces. This may be an electrical field acting on differently charged compo-
nents of a mixture.

Let us limit this discussion to constant velocities v, (in the laboratory system of co-
ordinates) of compound components. Then in the equations of motion of immovable
liquids we have to replace —iV — —iV-+mw; which leads in all energy-representation
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functions to the shift in the frequency w — w—k;v; and a shif in the chemical potential
p; ~ p;—mpi[2. Dealing with a binary solution we shall place the centre of the coordinate
system into the first component and designate the velocity of the second component rel-
ative to the first by v.

The poles of the dynamic susceptibility of the moving liquid give in the long-wave
approximation the following equation for the sound velocity s:

s*—5%20 cos §+57(v? cos® §—s7 —s3)+ 55720 cos S+ 5355 —st,—s27 cos’ 9 = 0,  (26)

where 3 is the angle between the vectors k and v. Using the theorem of Descartes, Eq. (26}
has two positive solutions if

s2(s3—v* cos® 9) > st,. 27

Hence, when condition (27) is correct, there are two sound modes in the system. Let us
consider 51, 5,, 51, to be positive. This does not narrow the generality of the investigation,
but only corresponds to the definite choice of a sign of square roots. Using the equation
u? = /s2s2—s%,, we can rewrite condition (27) as |cos 9| < u?/vs,. Analysing these corre-
lations, we see that if the immovable mixture was stratificated (u* < 0), then the moving
one remains the same. If there were two sounds in the immovable two-component liquid
(1?2 > 0), then at the low velocities of relative motion when vs; < #?, the moving mixture
will be stable. When increasing the velocity v, so that vs, = u?, there are two sounds in
the whole system except for the direction of § = 0. When vs, > u? the mixture will strati-
ficate into a cone having an apex angle of 3, = arc cos (u*/vs,), then in the rest of the space
the uniform mixture with two sounds will still exist. However the effect of the anisotropic
stratification into a cone having an apex angle 9, might appear onlywhen the loss of stabil-
ity occurs at k # 0. If the loss of stability is due to infinitesimal perturbations, i.e., when
it happens at k = 0, then the consideration of stratification cones makes no sense. Then
the mixture stratificates in the whole volume as soon as the velocity of the relative motion

reaches the critical value v, = V. §2—5%,/53, where k = 0.

Let us emphasize that we have considered the normal motion of mixture components.
When describing the superfluid motion of a binary solution, it is necessary to introduce
not two but three velocities: the velocity of the system as a whole and the velocities of
superfluid motions of two components.

We shall deal now with the question of the form of each collective branch in the
immovable Bose liquid. It is known that the usual phonon-roton branch has the disintegra-
tion threshold of the elementary excitations [26]. However it is clear that the spectrum
should have a continuation into the one-particle region. Such a continuation was observed
by Cowley and Woods [27] using inelastic scattering of thermal neutrons from liquid He*.
The theoretical peculiarities of the spectrum continuation beyond the decay threshold
at zero temperature were examined previously [28, 29]. The experiment [27] also shows
that there are in the liquid He* two branches of collective excitations. One of them begins
from k£ = 0 and it has a phonon-roton character and diminishes near k=~ 3 A-1, The
other branch begins at k ~ 1 A-! and continues to the single-particle region. It is possible
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to explain the split of the spectrum in a one-component Bose liquid if one supposes the
existence of bound roton pairs [30].

Let us show now that at a finite temperature each Bose component really has two
stable spectra without the supposition of an appearance of bound excitations. To do this
we expand in factor (22) the integrand but nf(k’) in powers of ', limiting ourselves to the
second order of the expansion. Then we obtain as an alternative of Eq. (22) the following:

kik \* 30®+(k*/2m;)?
kyoy=1+3—} — 7V
st =143 (3,) [~ T
In the case of independent components, when s,, = 0 = ¢, ,, we have from (23) &2 = &2,

¢> = g3, which means, after taking into account the form of Jik, w), that the collective

spectrum of each component satisfies the equation
i Kk \* 362+ (k2/2m,)?
& = Lkzipii(k) 1+3 T 28 (2 / mZ)_?- :
¥ m; 2m; [8,' —(k [2m;) ]

‘In solving the equation we made sure that each one-component Bose liquid can have
two stable branches described by the formulas

e? = k> +(kY2m,)? (28)
with one of the functions
ch = S{(Bf +B7 +1), b =s? [%‘%(BT+BF)—~ % (Bf~Bf)],
where we used the notations

= (K, =L)Y?, K; = 27 [1+% Pi2(1+3‘Ji2)],
. ) ‘
fip = 37‘-[q?+p?(2+%q?+“ aH—pi]'",

p; = ki/misi, q; = k/misi; Siz = n,-qi-i(k)/_mi

To clear these complicated expressions let us simplify them by thinking that p; < 1. Hence,
p?
h=ddltenlead) e —t[Z e ina. )

The first expression of Eqgs. (29) contains the temperature dependence qualitatively agreelng
with the low-temperature dependence of the sound velocity [31, 32], and at k — 0 coincid-
ing with the Etters sound velocity [33]. The second expression of Egs. (29) corresponds

eto the stable branch of spectrum (28) only at high momenta when k > k. So, the second
branch of spectrum (28) is of the one-particle kind ) :

D~ km,  Ime® ~ ~kkfmy (k> k). (30)
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As far as liquid He* is concerned, Eq. (29) may be applied to it only qualitatively because
it follows from the measurements of the kinetic energy of the particles [34] that pi~ 1.
However, one can see that beginning from k ~ ms;~ 1 A1 in liquid He* there can
exist two spectrum branches what is in agreement with experlmental data [27]. And below
k < k; the second branch & strongly attenuates (if s; > 0). When.g,, p, ~ 1 the real
part of the spectrum (28) is of the same order as the imaginary one.:

2 Sk Dymzmic form-factor

The information concerning the collective spectrum of a quantum liquid can be
extracted from the shape of a dynamic form-factor which is the measurable ‘quantity. One
usually produces this by measuring the inelastic neutron scattering. The first quantum
liquid, whose form-factor was mvestlgated in detail both theoretically and experimentally,
was liquid He*. The latést papers on this subject are.[27] and [35-37]. Recently the study
of the dynamic properties of liquid He® was also started [38-47]. The analogous character-
istics for mixtures of quantum liquids are not yet very well known.. In paper [48], whlch
also contains other references, the case of zero temperature was studied.

The dynamic form-factor is the Fourier tfansform of the correlation function “den-
sity-density”. For a mixture of liquids we define the: dynamlc form-factor as the matrix
having the elements

1
Dyy(k, @) = - j Rif(¥', 0, r, tyexp [ik(r-rf)_ ia)t]drdr"-d‘t, (31)

where the indices enumerate the mixture components, N is the total number of particles
in the system, the correlation function is

Rij(rs f r/, t’) = <Qi(r5 t)Qj(r’: tl)>: Qi(r" t) == ’/’?("a i)w:’("’ t) (32)

and y(r,t) is the Heisenberg field operator.. 4 :
Using the uniformity and the stability of the system we can transform function (32);

N dkdw
Rij(rs t P’, I’) r J ”(k (D) ex‘p [lk(r g )-—lw(t‘t )] (27’5)4 .

Thus,
Dk, @) = ¢~ 'Ryj(k, »).
Let us introduce the function

T(12) = —i<{Te(De(2),

where T is the chronological operator. This function is connected with the correlators
R(12) using the expression

T(12) = —i[0(t1)R(12)+0(z, )R] (112 = t,—1,),



in which 0(z) is the step function. Consequently,
Rk, ) = —21Im T;(k, 0)/(1 +e"’”“f).
But with the Schwinger variational technique it is not difficult to make sure that
T(12) = x(12)—in()n(2). |
Therefore,
Im T;i(k, w) = Im y;;(k, w)—(2n)*n;n 0(k)o(w).

Thus, we find that the connection between the correlator and the response function has
the form '
2 Im y;(k, w)

Rk, ) = — =i 2k s — (20 0 8(l)5(w). (33)

Taking into account that on the complex w-plane there is the representation

+ o0

1 [ yylk, w)
ij ks = = -
e o) = 5 | M )
with the spectral function
715k, @) = i[1;;(k, 0 +i0)—z;;(k, ©—i0)], (35)
we have
. ﬁa)
Im y;(k, co) = ——yu(k w) coth - (36)
Finally, the dynamic form-factor may be ertten as
Dyj(k, ) = @n)*(n; n,/e)5(k)0(w)+5u(k @), (37
here
Si(k, @) = yii(k, w)]o(1—e7*®) (38)
is the Van Hove function. -
Resulting from Eq. (19) and the approximation of (21) we look for complex w
(ny[miy) (.602'-85)]‘2 . \’/'-11‘_";/""‘-1"’2_3’_%2{ i 39

T et ) @ =) (@*=#2) (0*~32)
Eqgs. (35) and (39) when 0 # &, # & # 0 give us the spectral functions
Y11k, ©) = ("1/”"1) (w2—8§)k2v(k,‘w)i,
p1a(ls @) = N ngngfmymy £,k (k, ), (40)
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where the following notation is used:

y(k, w) = 2n8[(w* — &%) (® — 82_)]

= n 2 {8—1— [dw—e,)—d(w+e )]~ ;[5(w-s_)f6(w+s_)]}.

el —el

6. Sum rules

In this paragraph we shall obtain the formulas generalized on a binary Bose solution
those which are based on a mono-component liquid. We are interested in the integrals

+
.

1 5
Si (k) = 57; | Sk, w)dw,
+ o
1 il
Kij(k) = 5; J O)Sij(k, Cl))d(u,

+ o0
°

0 =5 [ stk 2. a0
n o

-0

Such integrals were examined previously [48], but in the case of zero temperature, and the
explicit forms of Egs. (41) were expressed through the macroscopic quantity of the energy
density. We shall examine here the nonzero-temperature case and express these integrals
through the microscopic characteristics, i.e., through the collective spectrum.

Using the properties of the isotropy of the system and of detailed balance we find that

Sif(—k, w) = Sij(ks o), Sij(ks —w),’: _eupé)sij(ka o),
and separating the Van Hove function into symmetric and antisymmetric parts we have

Sii(k9 CO) = Sff)(k’ w)+S§;)(k’ a)),

1 ,
Sg)(k, w) = 5 [Sij(k, w)+8;i(k, —w)] = 2—9 7:(k, w) coth </3_2w) s

. 1
SP(k, ©) = 5 [Sij(k, @) =Sk, —w)] = 3 7k, o).

We can rewrite Eqs. (41) in the form

- 1
S;i(k) = Zcﬂg f 7:(k, @) coth <ﬁ7w) do,
. e s . .



" g
0

da

v 1 -
Qij(k) = % j)’ij(ks ) ";J
0

For the structure factor we get

Sy(k) = (—ﬁ/—ml)-ki [ai ~& coth (%i) - 82“.—85 coth (%)] s

20(e% <&2)| e, -

‘\/nlnz/mlmz 8%2]‘2 1 ,B8+ 1 ﬂg_
= YOl P | coth [t ) - — L=y
S12(0) 20(e% —¢e2) [e+~co h( D) > , COth( 2 )]

When 6 = 0, then
(rafmo) (oo teDk® o nangfmgm, ohok?
2066 (6. +e.) 12 20818 _(e4+82)

Su(k) =

and in the long-wave limit S;;(k) ~ k. But if 6 3 0, the longwave limit is

| 5,,(0) = (MmO nin mim, 535(0)
T Best(0s2(0) esi(Os2(0)
Using Eqgs. (43) we are able to verify the short-wave limit for any 6

k= df

S12(0) =

For the second and the third of the integrals (42) we have
Kyi(k) = n1k2/2m1@s Ki(k) =0
and the relation
‘Qﬁ(k) = —Re y;;(k, 0)/o.

Since on the real w-axis the response function has the spectral representation

+oo. . .
1 ] 1+v(w) - vy -~
-.k’ _ e '..k, / = e ’,
111k, ) 27 fv))]( Q)[w—a)'+i0 o= =il do’

in which wW(w) = (#*—~1)1, the real part

+
P do’
Re ik, w) = o j Vii(k, @) ——r
T ) w—w

has the same form as Eq. (39).
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(42)

@)

(44)

(45)

(46)

C)



308

Let us calculate the coefficients of compressibility. When shifting the self-energy of
a system by the infinitesimal addition é4r, 7) the particle density changes by the quantity
on(r, t) = nyr, ) [ x(r', ¢, 1, DOP(¥', )dr'dt,

which is expressed using the microscopic compressibility x,(r, £, ', t"y and the pressure
change 6P(r, t). In turn, the pressure change is stipulated by the shift of the self-energy
6Pi(r, t) = -—-ni(r, t)éAi(}', t).

Therefore, considering the definitions of the response function (11) and (15), it is evident
that
Xii(ry t i',, t’) == "ni(ra t)Ki(rs ta rls t,)ni(r,n t,)-

But for an equilibrium and uniform system the latest expression is equal to the following:
Xii(ri Z 09 0) = _Ki(r: t 0, 0)1’1,2-
Then, after the definition of the coefficients of compressibility

x; = lim lim Re [ xk(r, t, 0, 0)e”"**~“Vdrdt,
k=0 0o-0

we are able to establish the relations

lim Re yu(k, 0) = —nfx; ' (48)

k-0,
between x; and the limiting values of the dynaﬂ‘lic' susceptibilities
lim Re g;,(k, 0) = —n,53(0)/m;s5(0)s2(0),
k-0 -
lim Re y,,(k, 0) = +/nynz/m my s32(0)/s5.(0)s%(0). (49

k=0
Comparing (48) and (49), it is clear that
K; = s?(o)/ni’nisi(o)sz-<0)s | (50)

where i # j. When considering the limiting procedure k — 0 for Eq. (47) and using the
relation (48) we shall obtain the sum rules for the compressibilities.

One can see from (43) and (50) that if the instability, caused by the condensation
of the soft mode, occurs at k, # 0, that is when e-(k;) = 0, then the structure factors
diverge and the compressibility coefficients are finite. But if the system stratificates at
k, = 0, becoming absolutely instable, then the coefﬁcients (50) and the structure factors
in the long-wave limit both become infinite.

7. Conclusion

The behaviour of quantum crystals in many respects is very similar to those of quan-
tum liquids. For example, in quantum crystals the diffusion processes play a much more
important role than that in classic crystals [49], which leads to the necessity to take into
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account the jumps of particles from one lattice point to another [50]. Thus, it is supposed
that properties investigated above of liquid Bose mixtures might be similar to the proper-
ties of solid Bose solutions, especially in the long-wave range, where the space structure
of a system is not so essential. '
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