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BOUNDS FOR THE PHASE-SHIFTS OF MODIFIED
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In this paper we deduce bounds for the phase-shifts in the presence of the Coulomb
potential, which, amongst other things, enables us to compuie the energies or potential
strengths for which these phase shifts become equal to 7/2.

1. Introduction

Bounds for the phase-shifts of spherically symmetric potentials which have a short-
-range, i.e., which fall off faster than (1/r) as r — oo were recently obtained with useful
deductions [1-3]. However, in several problems e.g., in the collisions of protons with protons
or electrons with positive ions, we have to deal with modified Coulomb potentials, that
is, those containing the Coulomb interaction together with a short-range component [4].
In the present paper, we shall try to obtain similar bounds for such modified Coulomb
potentials. But in this case, considerable modification of the analysis is required.

2. The modified Coulomb potential

The radial Schrodinger equation reads,

d* 27K I(+1y
[’dTZ +K?~ e ~U() - ] U, =0,
w(r) =t a5 r-—0, )]

where U(r) denotes the short-range part of the interaction, so that, r"U(r) — 0 as r — o
for some n > 1. The asymptotic form of the solution can be taken to be [5],

u(r) = B, exp (i8)) [sin (Kr—In/2—7ylog 2Kr+06,+9,] as r— o, )
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with
B, = (2r)"**(1/K) 21+ )i’ exp (ia)).

In (2), the real quantity §, is the phase-shift due to the potential U(r) in the presence of the
Coulomb potential, and,

o = arg I'(l+1+iy).

Let Fy(r; K) and Gy(r; K) be respectively the regular and irregular spherical Coulomb
wave functions, whose asymptotic behaviour is given by,

Fy(r; K) — sin (Kr—In/2—7 log 2Kr+ ),
Gr; K) = —cos (Kr—Inf2~ylog 2Kr+6)), as r - . 3)
F(r; K) and G(r; K) satisfy:
d* 2K i(d+1
[ +K2 y ( + ):, Wl = 0.

dr? r 7

“

Multiplying (1) by F, and (4) by‘ ufr), then subtracting and integrating between 0
and R, we get:

R
uz'(R)Fz(R)—Fi(R)u;(R) = g U(ru,F(r; K)dr,
where we have used the fact that, ‘
#(0)F1(0)— Fy(0)u,(0) =0

because, both u;, and F; — Constant x (*'*!) as r — 0.
We now let R - oo and use the asymptotic forms of u; and F, as given in (2) and (3),
to obtain,

KB, exp (i6)sin 6, = — | UGr)U,Fdr. (5)
0

We shall next obtain an integral equation for u, For this, we adapt a well known
technique [6].

We write,
w(r) = «(r)F,+P(r)G,s (6
where we would like to choose «(r) and B(r) such that,
«(r)F+ ()G, = 0. y )

Remembering that 4,(0) = 0 = F,(0) and also comparing the asymptotic forms (2) and
(3), we get, ’

a(o0) = Byexp (id) cos &, f(0) = 0. )
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From (1), (6) and (7) we get,
o« (r)Fi+ B (G = UM
Combining this with (7), we get,
o« () (F1G,— F,G}) = UGy,
B'(r) (FiG;— GiFy) = U(uF,. €)

The Wronskian F,G,—G,F; = K, can be obtained from (3).
Integrating (9) and using the values of «(o0) and B(0) from (8), we get,
N 1 r U r 7
o(r) = B, exp (id;) cos o;+ x J‘ w{rHUGE)G,(¥)dr
1 ’ ! ! !
B(r) = X w(rYU(r)F(r')dr’.
O N -

Substituting these in (6), we get, finally,

u(r) = By exp (i6)) cos 8,F(r)+ —’% J (Y, (PG )dr
+ G;g) J UG Yu(FYF ) (10)
. 0
Next in (1) we replace U(r) by AU(r) to get
2
[d vk X - I—(Z—H—)] w(rs ) =0. (11)
dr? r r :

The phase-shift §, now depends on 1. We wish to show that:

]

KB} exp [2i6(1)] 5 [51(/1)] =~ f UG [(r; H1Pdr. (12)

0

This is the analogue of a similar equation in the absence of the Coulomb potential [7].
(The equation is erroneously given in the reference 7.

For this we need an equation similar to (11) with 2+ 4 in place of 1. Multiplying (11)
by ur; A+4) and the latter equation by u(r; 1), subtracting, integrating between O and
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oo and invoking the forms of u(r; 1) and wu(r; A+h) when r - 0 and r — o as given
in (1) and (2), we get,

KB? exp [i8,(A+h)+i8,(1)] sin [§,(A+h)—8,(D)]
= —h | UMur; Dulr; A+ h)dr,
0
-whence, dividing by % and letting 4 — 0 we get (12).

3. The inequality

For the potential AU(r), equation (5) reads,
KBy exp [i6,(2)] sin 6,(2) = — A [ U@ u(r; DF,(rdr. 13)
0

Substituting in (13) the expression for u,(r) as given in (10) except that AU(r) replaces
U(r), we get finally,

K tan §,(3) = — A [ U@FXr)dr
0

o)

—ﬁfvvff”PmﬂfmwmwmﬁWW+amJUWﬁﬁwam+mﬁx
0 ] (4]

0T,
K tan §,(A) = —AR,— 28,4+ 0(1), 14

where,
Ry = [ UGFXDr,
0

[ea]

S, = f U(r) f—'—}@ [F Q) f U)YF(rYG(r)dr + G,(r)J‘ U(r")F f(r')dr’] dr. (15)
r 0

0

Now, from (13), on using the Cauchy-Schwarz inequality, we get
KB} exp [2i8,(A)] sin® 6,(4) < A* | U()FFdr § U@ [w(r; A)]2dr
. J ! .

ol

=2 J U(rFidr {—KBf exp [2i6,(2)] (% [51(71)]},
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on using {12). Whence we get,
a2 7
14 < (1/K)R, 7 [cot 8,(A)].

On integrating with respect to 4 when 0 < [6(4)| < @ in which case the integrand is con-
tinuous, we get,

[(1/5)—(1/1)] < (R/K) [cot (1) —cot 5,(¢)],  or,

(1/8)+(R,/K) cot d,(e) < (1/1) +(R/K) cot 5,(4). (16)
On using (14), the left side of (16) becomes,
. R, .
(1/e)— e_R,TSZS,_+ 0(8—3) which - (S/R) as &-—0.

So, (16) now yields,
(1/2) +(Ry/K) [cot 5,(4)] = (Si/Ry).
(0 < |8(A)] < m) 17

From (13) or (14), we can see that §,(1) = 0 when 4 = 0, as is to be expected. We
also. note that u,(r; A) is complex only through the normalization factor B, exp:(i5)), as

can be seen from (2). So, u/(r; A)/{B, exp [i6,]} is real. It follows from (12) that T D=0

if U(r) < 0 everywhere, that is, if the potential is everywhere non-repulsive. As 6,(0) = 0,
it follows that for A > 0, §,(4) > 0. Also, in this case, from (15), R, < 0.

Similarly if U(¥) >0, §,(}) < <0 for A >0 and R, is also >0. In either case,
— R, cot §,(1) = |R)] cot [6,(4)], and so from (17). we get,

(1/A)=(S\/Ry) = (1/K) [R)f cot |6, (A)]. - Lo .(18)
In partlcular, if 5D < n[2 then cot- |6,(/1)l >0 and we have,
. WK)IRY
S =
B > s :
(16D)] < 7/2) (19

S, and R, are functions of known quantities only and are given by (15). .

4. Some deductions

(f) From (18) we 1mmed1ately deduce that if:
10 M < n/2 then (1/4) > (S,/Rl) wh11e, 1f a/mn < (SR, then |5,(/1)| > n/2.
(ii) For a modified Coulomb potentlal it is known that [4]: .

(A) Bound states occur for energies, E, = —2n?m(zz’ ez/h)z(l/n’)z, where ni=n— (1),
n=1,23 ..; wn is the quantum defect and for-a pure Coulomb field, y(n) =0
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for all n and /. The quantum defect considered as a function of the energy K2 can be extra-
polated to positive energies, i.e., g, = g(K?), K* > 0 and is then given by

cot §,

237 .
cot [mu(K*)] = 1—exp (nf/K)

(B = 2mzz'e/h2). (20)

This relation is useful in calculating cross-sections for the collisions of electrons with
positive ions. '

-+ (B) For low energy scattering, we have the analogue of the effective range formula:

¢?K cot 5o+ Bf(K) = —(1/a)+(1/2)K>r§+0(K), 2D
where
5 dma ' e
uhe exp (me)—-l_ y %= BRK,

B as defined in (A) and

az

I' being Euler’s constant. Equation (21) is useful in proton-proton scattering problems.
Now it follows from (19) that when‘lél‘(/l)l < n/2, for energi¢s K? or potential strength
A such that, '

(S)/R) ~ (1/2) (22)
we have, |6,(1)] & n/2. When (22) is satisfied, (20) becomes,
cot mu(K?) = 0, "

so that the quantum defect 1, (K?) can be calculated. -
Similarly if (22) holds in the limit K — 0 i.e., for low energies, then (21) simplifies to

BAK) = —(1/a)+(1/2)K>rg + O(K?).
(iii) The scattering amplitude for a modified- Coulomb potential is given by [5],
JO) = f(6)+1u(6),
where £,(0) is the known pure Coulomb amplitude and f,,(0) is given by,

£.(0) = (1/2iK) ‘i {(21+1) exp (2io;) [exp (2i8,) — 1]P,(cos 6). (23)
=0

This shows_that for energies. K2 or a. potential strength, A, such that [§,] < /2 (this
being true in particular for high energies or large / when &, ~ 0), if (22) holds then |5}
~ /2 and the / th partial wave scattering dominates. Then (23) gives,

a0 = =(1}iK)(21+1) exp (2ia,)P/(cos 6).’
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