INTRAMOLECULAR FORCE FIELDS, COMPLIANCE CONSTANTS AND VIBRATIONAL AMPLITUDES OF III-A GROUP TRIHALIDES AND FeCl₃ By R. K. GOEL AND S. D. SHARMA Department of Physics, D. N. College, Meerut-250002, India (Received May 17, 1979) Three sets of force constants have been calculated for planar GaCl₃, ¹¹⁵In³⁵Cl₃, GaBr₃, GaI₃ employing OVFF, UBFF and GVFF models and two sets of force constants for pyramidal FeCl₃ employing UBFF and GVFF models, using recent vibrational data. Compliance constants have also been calculated. The trend of force constants and relative strength of chemical bonds are discussed. The effect of oxidation state on the stability of chemical bonds in various isoelectronic sequences is also discussed. The mean amplitudes of vibration have also been evaluated at three temperatures 0 K, 298.15 K and 500 K and the results are briefly discussed. The computations have been done with a TDC-316 computer. ## 1. Introduction Goel et al. [1] have studied the molecular constants of trichlorides of III-B group elements using the vibrational data of Beattie et al. [2]. But very recently Pong et al. [3] have studied the i.r. spectra of ¹¹⁵In³⁵Cl₃ in solid argon, Drake and Rosenblatt [4] studied the Raman spectra of the vapours over Ca Cl₃, GaI₃ at various temperatures and Pong et al. [5] studied the i.r. spectra of gallium trihalides in an argon matrix. They analysed the spectra assuming D_{3h} symmetry for these molecules. In order to extend this study to gallium trihalides these molecules have been considered, in this investigation, using recent Raman data [4] for GaCl₃, GaI₃ and i.r. data [5] for GaBr₃ (in argon matrix). In order to study the relative stability of chemical bonds of III-A group trichlorides, the recent vibrational data [3] in solid argon for ¹¹⁵In³⁵Cl₃ has also been selected. Similarly, to compare the relative stability of chemical bonds in GaCl₃, ZnCl₃ [6] and FeCl₃, the recent vibrational data of FeCl₃, given by Givan and Lowenschuss [6] (who contradicted its previous planar geometry and have analysed the spectra assuming C_{3v} point group symmetry), has also been considered in the present study. The best results of their computer fit are compared in Table I. The present paper thus includes, (i) the three sets of force constants using the general valence force field (GVFF), orbital valence force field (OVFF) and the Urey-Bradley force field (UBFF) models, for the molecules belonging to D_{3h} symmetry and two sets using GVFF and UBFF for FeCl₃, (ii) compliance constants to have another check, (iii) vibrational amplitudes for bonded and non-bonded atom-pairs at three temperatures (0 K, 298.15 K and 500 K), and (iv) the effect of oxidation state on the chemical bonding in the isoelectronic series. All computations have been carried out on a TDC-316 computer. # 2. Method of computation and results The molecules in the present study belonging to D_{3h} and C_{3v} symmetries give rise to four fundamental frequencies which are distributed in various symmetry species as follows: $$C_{3v}$$, $\Gamma_{vib} = 2a_1 + 2e$, $$D_{3h}$$, $\Gamma_{vih} = a'_1 + a''_2 + 2e'$. All the fundamentals belonging to the C_{3v} point group are infrared and Raman active. Under D_{3h} the vibration a_1' is Raman active and a_2'' is infrared active, while those belonging to the e' species are active in both. Wilson's FG-matrix method [8] has been used to calculate the force constants in GVFF, OVFF and UBFF models. The F and G matrices are taken from the literature [9-11]. The mean amplitudes of vibration have been calculated using Cyvin's secular equation [11] $|\sum G^{-1} - \Delta E| = 0$. Compliance constants have been evaluated using the expressions from literature [11]. Muller's L-matrix approximation [12-14] has been followed to solve the 2×2 determinant occurring in a_1 , e/e' species. TABLE I GVFF constants (in mdyn/Å) of some III-A group trihalides and FeCl₃ | Molecules | f_r | frr | f_{lpha} | $f_{lphalpha}$ | $f_r/f_{r\alpha}'$ | $(f_{r\alpha}-f'_{r\alpha})/f_{r\alpha}$ | |------------------------|----------------------|----------------------|----------------------|------------------------|--------------------|--| | GaCl ₃ | 2.690 | 0.171 | 0.053 | -0.026 | 0.058 | -0.068 | | | (2.766) ^a | (0.141) ^a | $(0.053)^{a}$ | $-(0.026)^{a}$ | $(0.052)^{a}$ | $-(0.057)^{a}$ | | | (3.133)b | $-(0.042)^{b}$ | $(0.053)^{b}$ | -(0.026)b | | i i | | 115In35Cl ₃ | 2.369 | 0.077 | 0.035 | -(0.018) | 0.039 | -0.029 | | | $(2.424)^a$ | (0.119) ^a | $(0.050)^{a}$ | $-(0.025)^{a}$ | $(0.055)^{a}$ | -(0,039)a | | | (2.493)b | (0.033)b | (0.031) ^b | -(0.016)b | | | | FeCl ₃ | 2.409 | 0.042 | 0.068 | -0.002 | 0.041 | -0.011 | | | (2.39)° | (0.077)° | (0.070)° | | | | | GaBr ₃ | 2.266 | -0.004 | 0.050 | -0.025 | 0.041 | -0.083 | | | (3.159)b | $-(0.257)^{b}$ | (0.044) ^b | - (0.022) ^b | | | | GaI ₃ | 1.992 | 0.382 | 0.034 | -0.017 | 0.015 | -0.066 | ^a From Ref. [1], ^b From Ref. [15], ^c From Ref. [7]. TABLE II OVFF constants (in mdyn/Å) of some planar III-A group trihalides | Molecules | K_{1} | A | K_{α}' | B/R | |---|----------------------|----------------------|----------------------|----------| | GaCl ₃ | 2.410 | 0.104 | 0.048 | 0.016 | | | (2.523) ^a | (0.087) ^a | (0.077) ^a | (0.014)a | | ¹¹⁵ In ³⁵ Cl ₃ | 2.236 | 0.048 | 0.070 | 0.007 | | | (2.224) ^a | (0.073)a | (0.090) ^a | (0.011)a | | GaBr ₃ | 2.093 | 0,027 | 0.181 | 0.004 | | GaI ₃ | 1.556 | 0.200 | -0.198 | 0.031 | ^a From Ref. [1]. TABLE III UBFF constant (in mdyn/Å) of some III-A group trihalides and FeCl $_3$ | Molecules | K | F | H | | |-----------------------|----------------------|----------------------|-------------|--| | GaCl₃ | 2,253 | 0.260 | -0.004 | | | | (2.391) ^a | (0.219) ^a | $(0.008)^a$ | | | $^{115}In^{35}Cl_{3}$ | 2.159 | 0.122 | 0.014 | | | | (2.106) ^a | (0.185) ^a | (0.015)a | | | FeCl ₃ | 2.460 | 0.046 | -0.010 | | | GaBr ₃ | 2.057 | 0.067 | 0.055 | | | GaI₃ | 1.284 | 0.491 | -0.099 | | ^a From Ref. [1]. TABLE IV Compliance constants (in Å/mdyn) of some III-A group trihalides and FeCl₃ | Molecules | c_r | Crr | c_{α} | $c_{\alpha\alpha}$ | $c_r/c_{r\alpha}'$ | $(c_{r\alpha}-c'_{r\alpha})/c_{r\alpha}$ | | |---|-------------------------------|-------------------------|--------------------------------|---|--------------------|--|--| | GaCl ₃ | 0.379
(0.367) ^a | -0.025 $-(0.020)^{a}$ | 8.511
(8.506) ^a | - 4.256 | 17.253 | 0.290 | | | ¹¹⁵ In ³⁵ Cl ₃ | 0.425
(0.471) ^a | -0.014 $-(0.021)^a$ | 12.705
(8.982) ^a | $ \begin{array}{c c} -(4.253)^{a} \\ -6.352 \\ -(4.491)^{a} \end{array} $ | 25.706 | 0.230 | | | FeCl ₃ | 0.420 | -0.009 | 14.767 | 0.273 | -0.243 | 0.062 | | | GaBr₃ | 0.453 | -0.005 | 9.167 | - 4.583 | 24.704 | 0.479 | | | GaI ₃ | 0.558 | -0.097 | 13.509 | - 6.755 | 65.315 | 0.793 | | ^a From Ref. [1]. The potential model includes five (D_{3h}) and six (C_{3v}) force constants, viz. f_r (bond-stretching), f_{α} (angle-bending), and $f_{\gamma\gamma}$, f_r , $f_{r\alpha}$, $f'_{r\alpha}$, $f_{\alpha\alpha}$ (interaction constants). OVFF and UBFF models include $K_1(K)$ as bond-stretching, $K'_{\alpha}(H)$ as angle bending, A(F) and B/R as interaction constants. The GVFF constants are presented in Table I while Tables II and | | | | | | | | | | | | | TABLE | |-----------------|----|-----------|-----|----|----|------|-------|-------|------------|-----|-------------------|-------| | Mean amplitudes | of | vibration | (in | Å) | of | some | III-A | group | trihalides | and | FeCl ₃ | | V | | | U_{x-y} | | $U_{\mathcal{y}\mathcal{y}}$ | | | | |------------------------|-----------------------|-----------------------|-----------------------|------------------------------|-----------------------|-----------------------|--| | Molecules | 0 K | 298.15 K | 500 K | 0 K | 298.15 K | 500 K | | | GaCl ₂ | 0.0405 | 0.0458 | 0.0543 | 0.0648 | 0.1048 | 0.1328 | | | Ou 013 | (0.0401) ^a | (0.0453)a | (0.0536)a | (0.0681) ^a | (0.1047) ^a | (0.1326)a | | | | (0.0388) ^b | (0.0431) ^b | (0.0506) ^b | (0.0646)b | (0.0646)b | (0.1323) ^b | | | 115In35Cl ₃ | 0.0403 | 0.0472 | 0.0568 | 0.0703 | 0.1257 | 0.1603 | | | | (0.0400) ^a | (0.0468) ^a | (0.0563)a | (0.0676) ^a | (0.1089) ^a | (0.1382)a | | | | (0.0397)b | (0.0463) ^b | (0.0554) ^b | (0.0713)b | (0.1335) ^b | (0.1686) ^t | | | FeCl ₃ | 0.0423 | 0.0481 | 0.0571 | 0.0743 | 0.1407 | 0.1800 | | | GaBr ₃ | 0.0374 | 0.0471 | 0.0578 | 0.0549 | 0.1067 | 0.1368 | | | | (0.0342) ^b | (0.0410) ^b | (0.0496)b | (0.0552) ^b | (0.1110) ^b | $(0.1425)^2$ | | | GaI ₃ | 0.0378 | 0.0509 | 0.0635 | 0.0517 | 0.1227 | 0.1581 | | ^a From Ref. [1]. ^b From Ref. [15]. III include the OVFF and UBFF constants respectively. Compliance constants are depicted in Table IV. The vibrational amplitudes for bonded and non-bonded atom-pairs at the three temperatures (0 K, 298.15 K, 500 K) are shown in Table V. # 3. Discussion From Tables I, II, III it is observed that the stretching force constant f_r (K_1 or K) shows a similar trend of variation, i.e., it decreases as the mass of the central atom increases, i.e., the strength of the chemical bond decreases from Ga—Cl to In—Cl. A similar trend has been observed for GaBr₃ (2.09) Table II and InBr₃ (1.78) [16] and for GaI₃ (1.56) Table II and BI₃ (1.74) [17]. It is in agreement with the trend observed by Goel et al. [1] and Sarkar and Singh [15]. Their results are also included in Tables I, II, III. The compliance constants c_r from Table IV are in the ratio c_r (GaCl₃) $< c_r$ (115 In 35 Cl₃) which also support the above trend. It is interesting to note that stretching force constants f_r from Table I for gallium trihalide is in the order f_r (GaCl₃) $> f_r$ (GaBr₃) $> f_r$ (GaI₃), which is in accordance with the electronegativities of the halogen atoms. A similar trend has been observed by Sanyal et al. [6] in the case of the II-B group metal trihalogeno systems. It is also interesting to study the relative strength of chemical bonds for III-A group halides having the same oxidation state but different coordination number. From the stretching force constant K_1 (OVFF) these results are summarized as $GaCl_{4}^{-}$ (1.728) [18], $GaCl_{3}$ (2.41), $InCl_{4}^{-}$ (1.584) [18], $^{115}In^{35}Cl_{3}$ (2.236), $GaBr_{4}^{-}$ (1.323) [18], $GaBr_{3}$ (2.093), GaI_{4}^{-} (0.987) [18], GaI_{3} (1.556). From this it is concluded that K_1 increases with a decrease in coordination number i.e. the chemical bonds in a trihalogeno species are more stable than in a tetrahalogeno species. A similar trend has been observed in the literature [16]. The stretching force constants f_r from Table I for the isoelectronic series $GaCl_3$, $ZnCl_3^-$ and $FeCl_3$ are III (2.690), II (1.169) [6], III (2.409) respectively. From this it is inferred that a higher oxidation state is more stable than the lower oxidation state. A similar trend has been reflected from the isoelectronic series, (i) $ZnCl_3^-$ II (1.169) [6], $GaCl_3$ (2.69), (ii) $ZnBr_3^-$ (0.904) [6], $GaBr_3$ (2.26), and (iii) for K_1 from Table II for $CdCl_3$ (1.125) [18], $^{115}In^{35}Cl_3$ (2.236). The UBFF constants for $FeCl_3$ are also included in Table III. But in this case the % deviation in observed and calculated frequencies (using this set of force constants) is found to be 2.3% for v_1 , v_3 and 68% for v_2 , v_4 . Thus the UBFF set of force constant does not seem reliable in the case of $FeCl_3$, however, the stretching force constant K is in good agreement with the corresponding GVFF stretching force constant f_r (Table I). When the vibrational amplitudes U_{x-y} of GaCl₃ and $^{115}\mathrm{In^{35}Cl_3}$ are compared at room temperature from Table V, it is found that $U_{x-y}(\mathrm{GaCl_3}) < U_{x-y}(^{115}\mathrm{In^{35}Cl_3})$ which is a reverse trend, as was discussed for their stretching force constants. Similarly the trend U_{x-y} for gallium trihalides is in the order $U_{x-y}(\mathrm{GaCl_3}) < U_{x-y}(\mathrm{GaBr_3}) < U_{x-y}(\mathrm{GaI_3})$, which is also opposite to the trend of their stretching force constant f_r or K. When the trend of the mean amplitude of vibration U_{x-y} at room temperature is studied in various isoelectronic series, (i) $\mathrm{ZnCl_3^-}$ (0.063) [6], $\mathrm{GaCl_3}$ (0.045), (ii) $\mathrm{ZnBr_3^-}$ (0.066) [6], $\mathrm{GaBr_3}$ (0.047), (iii) $\mathrm{ZnI_3^-}$ (0.073) [6], $\mathrm{GaI_3}$ (0.051) and (iv) $\mathrm{CdCl_3^-}$ (0.061) [18], $^{115}\mathrm{In}$ $^{35}\mathrm{Cl_3}$ (0.047), it is observed that the mean amplitude decreases with the increase in oxidation number which is also opposite to the trend observed for their stretching force constant. It is also apparent from Table V that mean amplitudes increase with the rise in temperature and the U_{x-y} for the non-bonded distances is greater than that for bonded distances. One of the authors (R.K.G.) is thankful to U.G.C., New Delhi, India, for financial assistance. ### REFERENCES - [1] R. K. Goel, S. D. Sharma, A. N. Pandey, Spectrosc. Lett. 10, 915 (1977). - [2] I. R. Beattie, H. E. Blayden, S. M. Hall, S. N. Jenny, J. S. Ogden, J. Chem. Soc. (Dalton) 8, 666-(1976). - [3] Richard G. S. Pong, A. E. Shirk, J. S. Shirk, J. Mol. Spectrosc. 66, 35 (1977). - [4] M. C. Drake, G. M. Rosenblatt, J. Chem. Phys. 65, 4067 (1976). - [5] R. G. S. Pong, R. A. Stachnik, A. E. Shirk, J. S. Shirk, J. Chem. Phys. 63, 1525 (1975). - [6] Nitish K. Sanyal, R. K. Goel, A. N. Pandey, Indian J. Phys. 49, 546 (1975). - [7] A. Givan, A. Lowenschuss, J. Raman Spectrosc. 6, 84 (1977). - [8] E. B. Wilson, Jr., J. C. Decius, P. C. Cross, Molecular Vibrations, McGraw-Hill Book Co., Inc., New York 1955. - [9] B. Krebs, A. Müller, J. Mol. Spectrosc. 22, 290 (1967). - [10] A. Müller, B. Krebs, J. Mol. Spectrosc. 24, 180 (1967). - [11] S. J. Cyvin, Molecular Vibrations and Mean-Square Amplitudes, Universitets Forlaget, Oslo 1968. - [12] A. Müller, C. J. Peacock, Mol. Phys. 14, 393 (1968). - [13] A. Müller, Z. Phys. Chem. 238, 116 (1968). - [14] C. J. Peacock, A. Müller, J. Mol. Spectrosc. 26, 454 (1968). - [15] P. C. Sarkar, G. C. Singh, Indian J. Pure Appl. Phys. 16, 1077 (1978). - [16] D. K. Sharma, Ph. D. Thesis, Studies in Molecular Constants from Spectral Data, Meerut University, 1976. - [17] U. P. Verma, Ph. D. Thesis, Theoretical Investigations on Vibrational Spectra, Meerut University, 1979. [18] B. P. Singh, Ph. D. Thesis, Gorakhpur University, 1972.