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LOW-FREQUENCY RESPONSE OF THE SINGLET-TRIPLET
SYSTEM IN THE PARAMAGNETIC PHASE
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The expressions for the longitudinal dynamic magnetic susceptibility of the singlet-
-triplet system in the paramagnetic phase are obtained within the linear response theory by
introducting two different single-ion relaxation times which appear due to the interaction
between the magnetic system and a thermostat. The dynamical properties of the system can.
be interpreted in terms of the Van Vleck mode scattered on Curie — Langevin fluctuation i.e.
a fluctuation of the diagonal part of the magnetic moment operator JZ. In the vicinity of the:
Curie point and in a low-frequency region we obtain the following results: (/) the central peak.
with the lifetime increasing to infinity at T¢; (i) the modified Van Vleck mode with frequency-
decreasing to zero as T'— T, but with finite damping. This mode passes into a central peak.
at a temperature Ty > T, defined as that at which the real part of this mode vanishes.

1. Introduction

The aim of this paper is to describe the influence of the single jon relaxation time Ty
on the magnetic excitation spectrum in the paramagnetic phase of the singlet-triplet systems.
Time 7, is related to transitions of the operator within the triplet states. The above mention-
ed problem was partly presented in our previous paper [1]. Spectral intensity obtained
by the method presented in [1, 2] is studied. The expression for the longitudinal dynamical
susceptibility is obtained within the linear response theory by introducting two different:
single ion relaxation times (74, 7,), which appear due to the interaction between the magnetic
system and the thermostat.

The susceptibility is directly related to the spectral intensity via the fluctuation-dissipa-
tion-theorem. On the basis of the general spectral intensity formula (see: [3, 4]) and the
results of paper [1] one can write:

S*(q, @) = 7~ coth 5—% Im x(q, ), M
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-where S+ is the spectral intensity and Im (g, w) — the imaginary part of the magnetic
-susceptibility, which is expressed by the following formula:

va(w)_'l‘ Xc-L(®@) -

@) = — , 2
14, @) 1-2J(q) (tyw(®) + Xc-r(@) @
“where
| xvvd i
o) = G5 in” ¢

yvy(w) is the Van Vieck single ion dynamic suspcetibility related to the singlet-triplet
transition of the J* operator (i.. inelastic term of the response) and yyy is the single ion
static isothermal Van Vleck susceptibility. y = 1/, and 7, is the relaxation time for transi-
tions between the singlet and the triplet. 4 is the energy difference between the triplet and
the singlet energy levels.

Xc—L
n = 2b
Xc—r(®) 1+iwr, (2b)

Yc-1() is the Curie-Langevin susceptibility, which is related to the intratriplet transitions
{i.e. the elastic term of the response) and t, is the relaxation time determining the dynamical
scale of the transitions due to the interaction with the thermostat. yc_y, is the static Curie-
~Langevin susceptibility, J(g) — the Fourier transform of the exchange integral.

As it was shown y is the damping parameter for the Van Vleck mode. If this parameter
is small enough then its value will not influence the qualitative results obtained below and
‘therefore we put y equal to zero (y = 0).

We also assume that the system is ferromagnetic below the transition temperature
which is defined as the temperature at which the static isothermal susceptibility diverges
for g = 0 ie.:

1-2J0) (xvv+xc-1) = 0. 3)

Now, we can write the following formula for the spectral intensity:

0f— o [0’y L— A_Z_(va + XC—L)]}

®
7! coth —— w1y, {xvaz(cﬁg — ¥+

il 2kT ~ (1-1(re)
i (@2 - 0% + 0’1} (0f = 0
svhere .
T2
[ S 4

2 0o s )
Do = NOi—L, iy : (4b)

1 X -
L= 4P @Aw e (4c)

- C~L

w0, = A/1=20(@ryv - LY

S*(q, o) is analyzed numerically in detail with no initial simplifications nor assumptions.
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2. Numerical results and their discussion

J(0)

In our model three parameters of the system i.e.: 4, V = and 7, are introduced.

The spectral intensity is calculated for a singlet-triplet system (P3*; J = 4 in cubic
environment) 1n a wide range of the above mentioned parameters. We find that 7, plays
a very important role because it can change completely the magnetic excitation spectrum
in the low-frequency region. As has been already mentioned 7, is the relaxation time related
to the intratriplet transitions (see: Eq. (2b)) i.e. with fluctuation of the diagonal part intra-
triplet part of the magnetic moment operator J* expressed in g,up units.

We obtain the following results:

.ot > 1 and  wety, > 1
Under this condition appears the Van Vleck mode only (see: Eq. (4d)). Fig. 1 shows the
Van Vieck mode energy as a function of temperature. Approaching T, from above one

= - )
wlK3, G LK
Te=MK ——= 410K

450K

e

n 20

Fig. 1. Temperature dependence of the Van Vleck mode (w,) and soft mode (wo) energies for several
values of 4. Dashed lines — energies of the Van Vleck mode. Solid lines — energies of the soft mode.
T.=11K; 4=50K, 4 = 100K

notices that the Van Vleck mode does not become soft. In the low-frequency region i.e.
wt, €1 we can arrive at one of the two following cases:

2. w1, €1 but  wery, > 1
then the spectral intesity is dominated by a strong elastic peak at @ = 0 (central peak).
Spectral intensity for the central peak can be expressed by the Debye formula:

®
S*(g, 0) ~ ———;, 5
(g, ). ot (%)
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with

=3 (Sa)

t* is the rﬁodiﬁed relaxation time. Eq. (5) shows clearly the central peak i.e. zero-frequency
fluctuations at the static stability limit. The width of this peak decreases to zero and its
height . grows to infinity at the Curie point. This is illustrated in Fig. 2. We find that the
central peak behaviour is due to the Curie-Langevin fluctuation i.e. the fluctuation of the
diagonal contribution to the magnetic moment operator Jz.

A'lifetime of this fluctuation becomes very large as the Curie temperature is reached
and at T, it tends to infinity. Similar results have been obtained-by Egami and Brooks
(see: [5]) in the mode-mode coupling approximation.

The total magnetic excitation spectrum consist of the Van Vleck mode in the high-
-frequency region and the central peak in the low-frequency region. The results are shown
in Fig.'2.

3.0t, €1 and @pT,, < 1. ,

The normal mode energies are defined as :the poles of y(q, w). The denominator
of Eq.‘(2)jmust be equal to zero i.c.:

g — 0 —iwt,(ws— o) = 0. (6)
Under the conditions (3) we obtain from Eq. (6) the following normal-mode frequencies
@y = V@g—yX(T)~in(T), )

where y(T) is the damping parameter of the modified Van Vleck mode (@,) and

2
Ty = 27, (7a)
2

The temperature variation of @, and w, are shown in Fig. 1. The temperature variation
of 7,, is shown in Ref. [1].

As it follows from Eq. (7a) y(T) is very slightly temperature-dependent and it remains
finite at T, i.e. the behaviour of y(T") is noncritical.

From Eq. (7) it is seen that S*(g = 0, w) shows two peaks at @ = N @g—y*(T) but
there is always the temperature T 2 T, defined as the one at which the real part of the
normal mode energy vanishes (see: Eq. (6)). In the range between T, and T, temperatures
the relaxation type response is obtained i.e. the zero-frequency fluctuations central peak.

The “pure” soft mode behaviour can only appear in the system if y(T) equals to zero
i.e. 15, is equal to zero and then T, = T,. The behaviour of St (g == 0, ) is illustrated in
Fig. 3. When T — T, the peak in S* (g = 0, w) shifts towards @ = 0 and the peak grows
to infinity with its width decreasing to zero.

The author is grateful to Professor L. Kowalewski for many critical remarks on reading
the manuscript. He would also like to express his sincere thanks to Dr A. Lehmann-
-Szweykowska for many useful discussions and helpful criticism and to B. Szczepaniak,
M. Sc., for her help in the computations.
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