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By minimizing the approximate ground state energy of the two-sublattice Neel-type
antiferromagnet with exchange-type and orthorhombic single-ion anisotropy, the stable
magnetic phases in an arbitrary directed external magnetic field were studied. It is shown
that for certain magnetic fields two kinds of metastable spin configurations can occur
which are dependent on the effective single-ion anisotropy with respect to the direction
preferred by the exchange interactions. For a sufficiently strong single-ion anisotropy in
the easy direction, the possibility for the coexistence of the stable canted-spin and ferro-
magnetic phases was also found.

1. Introduction

During the last few years the field-induced phase transitions in antiferromagnets
were intensively studied both experimentally and theoretically. It was found that the
external magnetic field parallel to the easy axis of the antiferromagnet induces the two
phase transitions. The first-order transition is between the antiferromagnetic phase (AF)
and spin-flop phase (SF). The second-order phase transition is between the spin-flop
phase and the paramagnetic phase. Detailed theoretical investigations of these phase
transitions can be found [1], where in particular, the temperature dependence of the critical
fields is given. This dependence was studied experimentally for McCl, - 4H,0 [2] and for
CoCl; - 6H,0 [3]. The T°-law [1], which should govern the low temperature dependence
of the critical field at the phase transition from SF to P, was not confirmed [2, 3]. It was
stated [4] that the transversal exchange anisotropy in CoCl, - 6H,0 and single-ion ortho-
rhombic anisotropy in MnCl, - 4H,0 is responsible for the deviation from the T°/-law,
and therefore the 72-dependence was proposed.
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The essential influence of the single-ion anisotropy on the occurrence of phase transi-
tions was found previously [5, 6]. These investigations, which were confined to 7 = 0 K,
showed in the presence of the field parallel to the easy axis the fourth phase, namely the
canted-spin phase (CS) can occur. This phase separates the phases AF and SF and the
phase transitions AF <> CS, CS «<» SF and SF «<» P were found to be of the second order.
Phase diagrams at 7' = 0 K for an antiferromagnet with the single-ion anisotropy in the
presence of the external field of an arbitrary direction were determined [7, 8]. The results
[7] were based on numerical analysis and the analytical considerations [8] are confined to
small anisotropies. However the phase diagram determined [9] is valid within the limits
of large single-ion anisotropies (metamagnet) at 7 = 0 K.

2. Determination of the ground state and stability regions

As in [10] we shall consider the antiferromagnet with the orthorhombic single-ion
anisotropy and perpendicular exchange anisotropy at 7' = 0 K in the external magnetic
field having an arbitrary direction. The Hamiltonian of our system can be represented as:

Ho=J Y (XS7S;+S7S;+ 2878 —uH, [}, S7+ ). 871
(Fa) f g

—qu[; Si+ 250 -Lx[; (SH*+ X(5p’] —Lz[; CHIEDNCAME €y

where X = 1+K,/J, Z = 1+K,/J. The indices (f, g> denote the lattice sites of the first
and second sublattice, respectively. The summation over (f, g) is restricted to the nearest
neighbours. K, > 0, K, > 0 are exchange anisotropy constants in the directions x and z.
J > 0 is the exchange integral between the nearst neighbours of the different sublattices.
p stands for the effective magnetic moment per site. H,, H, are the components of a homo-
geneous, external magnetic field and L, > 0, L, > 0 are the single-ion anisotropy con-
stants.

Applying the formalism introduced in [11, 12], we can determine the approximate
ground state of the Hamiltonian (1) by minimizing its mean value in the class of sublattice
saturation states. If we assume that in the saturation state the magnetic moment of each
sublattice lies in the plane xy, then the reduced mean value of the Hamiltonian (1) can be
written in the following way:

E = 1(X—2Z)cos 28—3 (X +Z) cos 20—a cos 2 cos 20— 2 sin o, cos B+ h, sin B),
| @
where S is the maximum spin eigenvalue and

hy, = pH, [yoJS, 20 = @+0, 2B =¢—0, 2a=(2S—-1)(L,—L)JS,

and 7, denotes the number of the nearest neighbours.
In the absence of the external magnetic field the stable antiferromagnetic configuration
is parallel to the x-axis if X—Z > 2a. '
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The stable configurations and the range of their stability are obtained by solving
the necessary and sufficient conditions for a minimum with respect to « and f

E OE PE O°E *E\? O’E
f_="_=o, A=—f — — =0, — 2> )
Ot op oa” 0Op oudp oot
The condition 0E/du = 0 leads to
coso = 0, 4y
(X+Z+2acos 2p) sin a—(h, cos f+h,sin f) =0, (5)
whereas 0E[0f = O yields:
(Z—X 42a cos 20) sin 2+ 2 sin a(h, sin B~ h, cos B) = 0. (6)

The system of equations described above cannot be solved analytically for an arbitrary
directed magnetic field except for certain well known cases, namely, when the field is
parallel (h, = 0) or perpendicular to the easy axis. These solutions, their stability ranges.

TABLE I
The stable solutions of (4)~(6) in the easy 4, = 0 or perpendicular 4 = 0 and their stability ranges and
energy
ol By =0
= 5 z
Phase stability range energy solutions with respect to o and §
AF 0< by <K —X+a | sine =0, cosf=0
| o == — ]
. B
sin® & = (hy—hY) 7/4a
(hx— ) A
Cs B < hy < F ~X+ag~ T
a
B
| cos? f = (hy—kD)/4a - [Z;
| 1
| _ _ - e
SF | E<h<h* z = | sing =22 inf =0
2 S x < 3 - "'a""h—x slnx—h—x, Slnﬁ——
3 3
P B < by X+a—2hy | sinz =1, sinf=0
y=0 he =0
SF N h ; hy
0<hz<hl —X+a——il? s1nzx=—}—l;, cosf =0
1 1
N P ; ] _ . e
P ! K< b, ,' —Z—a—2h; | cosz=0, cosf=0

1
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and the corresponding energies are given in Table L. The critical fields introduced in Table I
are the following:

T =[(X—2a)*-Z%]"7, @)
. B _.. [B
2—(X+Z+2a)\/hz1 —hg,\/hz1 , ®
3 = (X+Z+2a), )
hi = (X+Z-2a), B=(X-Z-2a). 10)

In spite of the difficulties in finding the analytical solutions of (4)-(6), one can deter-
mine the behaviour of spin configurations under the influence of the field of an arbitrary

’) e

Fig. 1. The assumed coordinate system: angle  measures the direction of the external magnetic field, the
angles # and @ are the spin directions in the sublattices

direction at various values of the single-ion anisotropy. In this section we shall analyze
the phase diagram.

Consider first the ferromagnetic phase, (F), in which the spins are mutually parallel.
This phase is described by equations (4)~(6). Note that when the field forms an angle
y = n/4 to the anisotropy axis the equations are easily soluble and the result is

coso =0, sin2f = h(v242+h>—h)/A%, (11)

where 4 = (X—Z+2a),h = \/ h2+h2. The energy corresponding to these solutions is
the following:

X +a— A sin f[sin f+2 cos f(cos f—sin f)~']. (12)
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Thus, conclusions drawn generally for arbitrary field directions can be verified by the cor-

respondence in this particular case. \
Let us examine in a general way the stability conditions for phase F. Since 0*E/df0x = 0

for (4)(6), these conditions reduce to 82E/0a* > 0 and thus one can find that the phase
is stable outside the ellipse-like curve described by the parametric equations

h, = cos X —Bcos®B), h, = sin f2Z+Bsin® p) (13)

Fig. 2. The schematic phase diagram for (X—Z) > 2a > 0. The ellipse-like curve corresponds to Eq. (13},
the astroid-like curves to Eq. (I8)

and this is illustrated in Fig. 2. It follows from (4) and (13) that at the stability boundary
the spin configuration is given by

—4a(X +Z)—{AX(X + Z)* + L [A*—16a°(A> - 4rD)]}'?

1 [16a*~ A7] > (19

cosa =0, cos2f=

where 4 and A are defined by (11). »

If the anisotropy constants are appropriately chosen, then the stability boundary
corresponds to those derived previously [7, 8], whereas there is no correspondence between
(13) and its counterpart given by Eq. (1.9) in [9].

The eventual canted-spin (CS) phases are described by equations (5-6). In this case
the condition 4 >> 0 yields the inequality

1 —sin? &) [k h,+2aB sin® 2
( s OC)[ x_z+ ab sm ﬁ]> 0. : 2 8 (15)
sin 28
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One should notice that the left-hand side of (15) leads to the following spin configurations
at the stability boundary: :
sin o = 1, (16)

heh, '3
2aB) '

The configuration of (16) corresponds to the same ellipse-like stability boundary as
that given by (13), which now becomes the upper bound of a CS phase. Inside this stability
boundary we have the CS configuration for which sin? « < 1. As seen from (16) we have
sin® = 1 at the boundary and thus this configuration approaches continuously that
of the F phase.

Equation (17), along with the condition 4 = 0 leads to the second stability boundary
which is illustrated by the two astroid-like curves in Fig. 2

B[X +Z+2a(1—06%)'?1> ~h2h% + h2h5 —4ac®B[2a£ (X +Z) 1-6)*] = 0.  (18)

sin2f =¢ = — ( an

Here, two CS phases coexist, which is characterized by the following properties:
sin2f; >0 and sin28,<0 if 2a>0, (19)

or
cos2f, =0 and cos2B8,<0 if 2a<0. 20)

The validity of the above inequalities follows from the inequality given in (15) and the
properties of the trigonometric functions. _

The coordinates of the cusps on the astroid-like curves can be found by sloving the
equations dh,/dh, = 0 or, where h, and A, are given (18). Thus, in the case when dh,/dh, = 0
we have

cosf =0, sina=0, @
which corresponds to the coordinates
hz = 05 hx = ihi" (213)
and the second solution,
x
sinf =0, sine= —,2; , 22)
3
with the cusps at
h; =0, h,= %h3, (22a)
Moreover, the condition dh,/dh, = oo yields the solution
1t [B
sin2f =06 = 41, sine= i:/—i\/h—’;’ (23)

B
and the coordinates of the cusps A, = IZ = +2a \/ rE h, = b7 = /Bh%.
3
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As seen from formulae (21) and (22) and Table I, the solutions obtained and the critical
field are the same as those corresponding to the transition from phase AF to CS and from
SF to CS. This is an obvious result if one takes into account that 4, = 0 corresponds to
the field parallel to the easy axis (2, = 0, h, = 0).

The area inside the astroid-like curves can correspond to various spin configurations
depending on the sign of 2a = L,—L, (see Eqs (19), (20)). Thus, if L, > L, then the two
configurations: sin 2f; > 0 and sin 2f, << 0 can coexist inside this area. The energies
corresponding to these configurations are equal on the straight line s, = 0. This can be
found easily if one notes that sin 2f; = sin 28,(8, = =—f,) and inserts this to (2). Of
course, one can also find the exact solutions for f, and 8, on this line. These are given
in Table I for the CS phase.

In the opposite case, i.e., if L, < L(2a < 0), inside the astroid-like curves, we have
the configurations for which cos 28, = 0 and cos 28, < 0. The curves on which the energies
of both these CS phases are equal are the straight lines A, = + A% This can be found by
the following argument. One can assume that on the equal-energy curves the spin con-
figurations of the coexisting phases have the property cos 28, = —cos 28,, i.e., the same is
found when the energies of the AF and SF phases are equal at points A, = 47, h, = 0
of the phase diagram. One can, in turn, determine the general spin configuration

hyh,

sin 2B, = sin 28, = — 228 —cos 288, = cos 28,, (24)

which corresponds to the equal-energy curves. By inserting (24) into (2) we obtain the
lines A, = +AZ on which the energies of both the CS phases, CS, and CS,, are equal

Ecs, = Ecs, = — X +a-+a(h3)? sin® 26/(h3). (25
Finally, if L, = L (2a = 0), we have h} = +hf = 1 h;, h, = 0 which means that the

equation is satisfied by the two points at which the first order phase transition from the
AF phase to SF occur.

3. Magnetization and magnetic susceptibility tensor

In this section we shall examine the character of the phase transitions on the stabilities
boundaries. To accomplish this we shall examine the behaviour of the magnetization
components

¢E
m" = _% a.. = sin o sin (')"*‘ﬁ)a (26)
1 J0E
L . w——— e == &1
mt = - % sin & cos (7 + B), @n

and the components of the susceptibility tensor

omll
il =5 28)
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dmgpmggumgn . oo - :"M]<29)
— (30)
where h = \/m, h, = hsiny, vh, = hcosy.

TABLE II

The magnetization components when the external magnetic field is parallel or perpendicular to the easy
direction. and 22 > 0

7T
m” niy
AF | 0 0 oy
cs b AL B ] G I
( 4a T lda 2T Y 4aB

SF B | 0 '

P 1 0
y=0 hy=0

SF hofhE 0

P 1 0

The magnetization and susceptibility components corresponding to 4, = 0 or 4, = 0
are given in Tables II and III, (see also Table I for the stability regions and Eq. (7)—(9)
for the definitions of the critical fields). These results are illustrated in Figs 3-6. One can
see that if 2a > 0, then all the phase transitions are of the second order except for the case
2a = 0 when at the point 4, = 0, h, = =AY the single point corresponding to the stability
boundary (18) the system undergoes the first order phase transition. In the opposite case,
when 2a < 0, the first order phase transition can occur inside the region determined by the
stability boundary (18). If this phase transition occurs on the equal-energy straight lines
h, = +kZ%, then the jump in the magnetlzatlon is the foIlowmg

ml)—ml = Am\ = h¥cos 28,[(h3)* +4a®sin® 28,17V, (29)

K
my—mj = Am* = Am! 3 sin 28,. (30)

(Y



The susceptibility components

axis and 22 > 0
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TABLE III

when the external magnetic field is parallel or perpendicular to the easy

y=7 by =0
) _-n s 1 R 4 -
| Zn X zL
AF 0 | 0 2z
" —h;
cs 1 R, sin? 28— hxh?—2(hy— BY)? sin? B BE+BE(HE —2hy) sin? 28
4a 4ahyh? sin 28 dahyh¥ sin? 28
SE 1 o D5+ 4aky
|' B KRR~ (R0
-z
p 0 0 Nt e~ 20
| hy(hy— X +Z—2a)
y=0 hy=0
SF 0 (FS*hE — dah?
Vi B [hhs+ (B)?RE]
P o 0 X—-Z :I: Za_
ho(hy+ X—Z+2a)

pm
mb
' i
} { ] m"
| L
|
!
mi
|
I | .
I
! mt
ﬁ_ﬂh‘)":ﬂ l mt=0 mi=0
; g kg hy
|
{
AF } cs SF P
| I
| |

Fig. 3. The schematic dependence of the magnetization components on the field strength when the external

magnetic field is parallel to the easy axis (h; = 0) and L, < L,
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Fig. 4. The schematic dependence of the magnetization components on the field strength when the external
magnetic field is perpendicular to the easy axis (hy = 0)

Fig. 5. The schematic dependence of the susceptibility components on the field strength when the external
magnetic field is parallel to the easy axis and L, < L,



Fig. 6. The schematic dependence of susceptibility components on the field strength when the external
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Fig. 7. The schematic dependence of the magnetization components on the field strength when the field
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Fig. 8. The dependence of the magnetization components on the field strength when the field is parallel

to the easy axis and 2a < —Z
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This corresponds to the transition from the configuration corresponding to cos 28, >0
to that corresponding to cos 28, < 0 (see, Eq. (20)). The jump in the component m is
shown in Fig. 7, which illustrates the dependence of m! and m*, on h,.

As seen from Eqgs. (29) and (30) Am! = Am* == 0if B, = B, = +n/4. This correspond
to points h, = +H4, h, = +h7 of the phase diagram. At these points the components of
the susceptibility tensor are divergent. This means that these are isolated points of the se-
cond-order phase transition or terminal points of the curves of the first order phase transi-
tion. It should be noted that if 2a > 0, i.e., in the opposite case as considered above,
these are the points b, = +h}, h, = 0 and h, = *h3, h, = 0 which are isolated points
of the second order phase transition, whereas the points /, = +h2, h, = L h correspond
solely to stability boundaries of certain phases such as (sin 28, > 0, sin 28, < 0).

If 2a = L,—L, < 0 and the value of L, increases, then a direct transition from the
AF phase to the P phase can occur. This is obvious from the equations (1)~(9) and Table L.
Such a transition is illustrated in Fig. 8 one the m! vs &, diagram.

4. Influence of the single-ion anisotropy on the phase diagram

In the previous section we focused on the sign of the effective single-ion anisotropy
2a = L_— L, which can influence the kind of the phase transition. To examine this in the
fullest detail we shall first consider how the stability boundaries are changed under the
influence of the value of 2a. For this purpose we will examine the derivative dh,/dh, on
the stability boundary (13). This derivative is equal to zero at the points k. = 0, b, = +h,
regardless of the value of 24, and additionally at the points

2X

B=4+42X [—, 31

2= T3 3B (€3))
X+3Z—6a[X—3Z—6a]'/?

e = £+ ——— | — (32)

4T = 3 3B ’

when 2a < —Z+ X/3. The stability boundary (13) and its characteristic points in the latter
case are shown in Fig. 10. The coordinates of the characteristic points cusps of the second
stability boundary (18) are given by (21-23). Taking this into account we can show that
if the inequality is satisfied then

Z(X +Z)

02222 - —/— 33)
2X+Z

and the stability boundary (18) is contained within the boundary of (13) as shown in Fig. 9.

If the single-ion anisotropy in the easy direction is strong enough, i.e., if 2a is suffi-
ciently small, the curves of the stability boundary intersect. This means that there exists
an area in the (4, h,) -plane where the three phases CS;, CS, and F coexist. This area

corresponds to the shaded region in Fig. 10. At these points of the curve (18) which are
included inside the astroid-like curve (13) the system undergoes the second order phase
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Fig. 9. The phase di for a > 2a > —ZX+2)
1. . (] ase diagram 10r a4 > 24 = ———————
5 & £ 2X+Z
Ky b

Fig. 10. The phase diagram for —Z < 2a < —Z - (X+2)[2X+Z

transition between the CS and F phases because sin? ¢ = 1 in the F and CS, the phases
and the magnetization is continuous through the transition.

If 2a decreases so much that its value reaches —Z, then the stability boundary (13)
is tangent to the straight line A, = +Af and at the point of tangency the energies of the F
and CS, phase are equal. This results from the fact that the energies of both the CS phases
are equal on the line 4, = +A¥ and, on the other hand, the energies of the F ans CS, phase
are equal on the stability boundary (13).

With a further decrease of 2a, if its value is equal to —Z — X/3, the curve (13) is tangent
to the straight lines #, = +A7 and also to curve (18) at some of the cusps Fig. 11, there
this is illustrated for 4, > 0, &, > 0. As can be seen from Fig. 11, there is another tangent
point of the stability boundaries (13) and (18) which is marked by C. In the shaded area
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between the stability boundaries (13) and (18) first order phase transitions between the
phases CS; and F can occur. The exception is a single point k, = A, h, = h}, at which
€08 0 = €08 s, = 0 and Br = Bcs, = n/4 and the transition is of the second order.

Fig. 11. The phase diagram for 2a = —Z— X/3. The dash line denotes that the condition sin? « < 1 is not
satisfied. In the shaded region first order phase transitions between the phases CS, and F can occur

‘This is clearly seen if the above equalities are inserted to the formulae (26) and (27). Gene-
Tally, the tangency points of the stability boundaries correspond to the spin configurations:

€os oy = COSs ocs = 1, (34)

. (39

€08 2f¢cs = cos 2P = (X—Z—18a)

‘where the upper sign refers to point D and the lower one to point C in Fig. 11.

With further decrease of 2a toward 2a = —(X+Z), point C approaches the origin
of the coordinate frame. The phase diagram for 2a = —(X+Z) is shown in Fig. 12.
Below this value of 24 there exists an area in the phase diagram where two F phases
‘metastable with respect to CS can occur (shaded area of Fig. 13).

Regardless of the fact that equations (4)-(6) are not analytically soluble for an arbitrary
field direction, one can draw some conclusions concerning the behaviour of m! and m*
under the change of 2a. For this purpose we write the formulae for m! and m* in the
following way:

X+Z+2 2p) sin? a
mu=( +Z+ a;os B iy (36)
mt = — _(X——Z—2a cos 20) sin_2_ﬁ. 37)

2h
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Fig. 12. The phase diagram for 2a = —(X+Z). The dash line denotes that the conditions sin® & < 1 is not
satisfied

b Ky 0 -hy K

S

Fig. 13. The phase diagram for 2a < —(X+2)

Here we took advantage of equations (4)—(6). It can be seen that m!l > 0 regardless of the
values of # and 24, whereas the sign of m* depends on the spin configuration and can be
changed under the influence of the field. If the system is in the F phase, when cos a = 0,
we have:

N (X —Z+2a)sin 2P

nte - ETRT (38)

Thus, in this case m' <0 if 2a> —(X—Z) and m* >0 if 2a< —(X-Z). If
2a = —(X~Z) then the perpendicular magnetization is equal to zero and is independent
of the strength of the field. If 2a < —(X—Z), we can also conclude that the spin direction
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is between that of the field and the effective hard axis if 2 > —(X—Z) and between that
of the field and the effective easy axis.

It is also possible to find the spin configuration in the CS phase if 2a < —(X—2Z).
Since the second order phase transitions occur and m* > 0 on the stability boundary (13),
m* vanishes for some values of the field components in the region of the CS phase. This
means that for these values of field components the spins of the two different sublattices
form the angles +¢, of the same magnitude but different sign to the direction of the
field. Bearing this in mind and taking into account the equations (5)-(6) we now find that
m* = 0 for h and y (for definition of A and y see Fig. 1) satisfying the equation:

x B
h_h3 ""4_a

coszy=——--, 39
_ \/ > (39
da [ — —

da

which corresponds to the angle & given by

. B
cos” &= — —. (40)
4a

It can be seen that the angle ¢ is independent of the magnitude and direction of the
external field but this solely depends on the material constants.

One can also note that Eq. (39) and (40) have a physical sense if 2a < —(X—~2), i.e.,
that is, equation m" = 0 have physical solutions if this condition is satisfied.

b-m

|
|
Fig. 14. The schematic dependence of the perpendicular magnetization components on the field strength
when the angle y of the field is such that tgy < [hg/h:l mf" corresponds to 2a > —(X—2Z2), mj- ‘to
2a = —(X—Z), mj t0 22 < —(X—Z). Note that the existence of an inflection point at s = 0, which
follows from the vanishing of
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Fig. 15. The schematic dependence of the perpendicular magnetization on the field strength when y satisfies
tgy > |KZ/hY|, m; corresponds to 2a > —(X—Z), m}to2a = —(X—Z), m: t02a < —(X—2). ks, a2,
ha,3, hi,1, A2, hi,s denote the stability boundary (18) for the assumed value of y

The above discussion together with equations (29) and (30) allow us to draw a sche-
matic dependence m* on 4. Fig. 14 shows this dependence for such a direction of the field
that ctgy > hg/h; and Fig. 15 this dependence if ctgy < KZ/hL.

5. Concluding remarks

The results of this paper are valid, in principle, for the values of the single-ion anisotropy
which are comparable with the exchange integral. However, we should also realise that our
approximate ground state coresponds to a classical expression if the value of S is sufficiently
large. In this case our results should be also valid for large values of the single-ion anisot-
ropy. Such an approximation seems to be justified if the external magnetic field applied
parallelly to the easy axis, for the energy of the zero-point motion, is then negligible. Thus,
our results should be approximately valid also for the metamagnetic case.

It is note worthy that our results correspond to those of others [5-8], except for some
of the results reported in [8]. These concern the order of the transition at the cusp of the
astroid-like stability boundary. As seen from our report this is the second-order phase
transition that the system undergoes at the cusp, whereas according to [8] there occurs
a first order phase transition. The second discrepancy concerns the susceptibility tensor
which, as seen from our studies, should be symmetric at each point of the phase diagram.
Due to the approximations made in [8] this symmetry has been broken.

There are also some disagreements with the results presented in [9] for the metamagnetic
case. This is due to the discrepancy in the stability boundaries which has been erroneously
derived in [9]. In particular, this concerns Eq. (1.9) of [9] that, as can be shown, does not
satisfy the condition for a minimum of the free energy. This propably leads to different
regions of metastability than those obtained in this paper.
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