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DOMAIN STRUCTURE PARAMETERS IN A UNIAXIAL
FERROMAGNETIC SUPERCONDUCTOR
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By using the Ginzburg-Landau theory and micromagnetic theory of magnetism a mag-
netic domain structure for a finite sample of a uniaxial ferromagnetic superconductor is
studied. The distribution of the magnetic induction vector in domain structure of the Landau-
-type is derived. The dependence of the domain wall width on the sample thickness and
penetration depth is obrained.

1. Introduction

Coexistence of superconductivity and magnetic ordering has been a subject of many
experimental and theoretical papers [3]. At first Mathias et al. demonstrated the existence
of the superconducting phase transition (7,) below the temperature of magnetic order
(Ty) in Gd,Ce;..,Ru, and Gd,Y,_,Os, alloys [1-2]. Besides, several} experiments gave
evidence of coexistence of both these phenomena in the following alloys: Gd,La,_, [5],
Tb,Ce,_,Ru, [6] and Gd,Ce,_,Ru, [6], [7]. Up to now the main question to answer in
connection with the problem of coexistence is a type of magnetic ordering. Steiner et al. [16]
have pointed out the possibility of coexistence of the spin-glass type order with super-
conductivity in Eu,La, _,. Barz [17] has shown that the mixture MosSnGa, sSe is a ferro-
magnetic superconductor. Recently, Fischer [8], Moncton [11], McCallum [10] and Ishi-
kawa [9] have demonstrated experimentally that antiferromagnetic or ferromagnetic order
can coexist with the superconductivity in Chevrel phases. The first theoretical investigation
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connected with superconductors which have magnetic ordering have been worked out
by Gorkov and Rusinov [4] in the framework of the Abrikosov-Gorkov theory. Apart
from microscopic attitudes towards the problem in [13-14] a very interesting phenomenolo-
gical approach has been proposed by Krey [18]. This approach was applied to describe
a ferromagnetic superconductor where among others the magnetic domain structure with
asymptotic restrictions has been treated.

The main aim of our paper is to investigate the existence of the periodic domain
structure in the finite ferromagnetic superconductor sample within the phenomenological

approach [26].

2. Free energy of a ferromagnetic superconductor

The combination of the Ginzburg-Landau theory and micromagnetic theory of
magnetism was previously applied by Krey [18] to the idealized one-dimensional magnetic
domain structure of the Landau type (see Fig. 1) in a uniaxial ferromagnetic II type super-
conductor. However, the free energy functional has not contained the demagnetization
energy produced by the demagnetizing field due to magnetic poles on the sample surfaces.
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Fig. 1. The domain structure of the Landau type. Angle describes the rotation of the magnetization vector 7

in the sample, 8 and A is width of the Bloch wall and domain, respectively and D, T and L denotes thickness,
width and length of the sample, respectively )

Odozyniski [19] has recently taken demagnetization energy into account in the case of
a pure ferromagnet and he obtained some formula describing the behaviour of the magneti-
zation vector as a function of the position in the domain structure and the dependence
of the domain width 4 on the sample thickness D. Let us consider the density of the
demagnetization energy for the ferromagnetic superconductor similarly as in [19, 20} as

follows
g4 = 27 1q, sin @(x) sn QK(k)x/4), )
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where ¢p, = 8n2pug 172 exp (—nD[24), uo is the vacuum permeability, J, = |J| denotes
the length of the magnetization vector J = J,[0, cos @(x), sin p(x)], sn is the elliptic sine
and K(k) is the complete elliptic integral of the first kind and & denotes the elliptic modulus.

Besides, the density of the anisotropy and exchange energy, respectively, can be
expressed in the following way

g, = K cos? p(x), (2)
e = Ap¥(x), 3

where A denotes the exchange integral and K is the anisotropy constant.

The three above-mentioned energies (1)-(3) are connected with a part of the free energy
due to ferromagnetic ordering [19]. Now, we have to include to the total free energy of the
system some additional terms due to the existence of the superconductivity. Namely, the
condensation energy density ¢, which is assumed to be constant because the penetration
depth A is much larger than the coherence length ¢ (and B~ uoH,; where H,, is so-called
lower critical field in superconductor). Then, it means that the order parameter is practically
independent of position in the sample.

The kinetic energy density of the superconducting currents can be written down as

e = (2p0) " 'AT2{AX(X) + A2(x)} 4)

Here, 4 = [0, 4,(x), A,(x)] denotes the vector potential of the magnetic field. Finally, it is
necessary to include the magnetic energy density

&m = (210) " {[B,(x)—J, cos p(x)]* +[B.(x)~ Jysin p(x)]*}, (5)

where B = [0, B(x), B,(x)] is the magnetic induction vector (E = rot ,71). By combining
Eqgs. (1)(5), we obtain the free energy functional of the ferromagnetic superconductor

4/2

1 . .
F =2TD f {2— [(A,(x)—J, sin @(x))*+(4,(x)+J, cos p(x))*
g Ho
+272(AX(x) + AX(x))] + K cos? p(x)+ Ap*(x)—e,
+27 g, sin p(x) sn (2K(k)x/A)} dx, (6)
where T is the dimension of the sample in the plane perpendicular to the z-axis (Fig. 1).

3. Solutions of minimization equations

The minimization of the free energy functional with respect to the rotation angle
@(x) of the magnetization vector and the vector potential A gives us

24¢(x)+ K sin 29(x)—L gp cos p(x) sn 2K(k)x/4)
= —ptg "J,[4y(x) cos p(x) + A4,(x) sin p(x)] (7a)
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A()=A"24,(x) = J, 2 in p(x) (7b)
dx
A=A 0%) = —J, L cos p(). “ (70)
dx

A rigorous solution to Eqgs. (7) is practically impossible. Let us try to solve these
equations by means of an iteration procedure. The first step is based on the assumption
that the right hand side of Eq. (7a) is negligible (the following condition has to be fulfilled:
nAJ2K < 4uy/2K%k?®) and Eq. (7a) has the form

24p(x)+ K sin 2¢(x)—27 g, cos @(x) sn (2K(k)x/4) = 0. ®)
The solution to Eq. (8) is well-known [19]
cos p(x) = cn (2K(k)x/4), sin g(x) = sn 2K(k)x/A) ®

with the additional condition. (Condition (10) can be obtained in the following way: from
Eq. (9) one has to calculate ¢ and insert it together with solutions (9) into Eq. (8).)

42K} (k)4™* = KA~ (1—qp/4K). (10)
Furthermore, the so-called transversality condition [23] leads to the additional formula

4K*(k)[A* = KA = r5> ¢h))
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Fig. 2. The dependence of reduced domain width A on the reduced sample thickness D for (P;/n?) = 0.04,
0.4, 4, 40. The (reduced) sample thickness D, corresponds to the elliptic modulus k& = k, = 0.9848 and
D, corresponds to k = 0
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The dependence of the domain width 4 on the sample thickness D can be easily seen
from Egs. (1), (10) and (11). Some numerical results 4(D) for various values of the param-
eter P, = 210K J, 2 are shown in Fig. 2. Let us notice from Fig. 2 that the dependence
A(D) holds for arbitrary thicknesses of the sample 0 < D = DJry, < o if P; > 472 and
0 < D, <D < oo when P; < 4z (a helical magnetic structure exists for D = D, (i.e.,
k- 0)).

One way to solve Egs. (7b), (7c) is to expand the elliptic functions in Fourier series [21]

0

B iy 7 sin {(2n—1)nx/4} .

sn (2K(k)x/4) = K(k)k 2 , sinh (2n — 1)K (k)/2K(k)’ - 1)
K cos {(2n—1)nx/4}

on QR(X/A) = Lok E :cosh n—1)nK'(k)2K(k)’ (13)

n=1

where K'(k) = K(k') and k'> = 1—k>. Then, we obtain solutions of Eq. (7b) and (7c) as
follows

0

4 _ AJ, 2n~— 1)_ cos (ZnTI)nx/A B
) = = K()k £ (2n—1)>+(d[rA)* sinh (2n— DzK'(k)2K(k)’
A0 = — AJ, Z ] (2r2t~i_ = sin (2n—1)jrx/A . 14
Kk (2n—1)*+(d/rA)* cosh 2n—1)nK'(k)/2K(k)
n=1

Formula (14) after simple calculations gives a concise and analytical expression for the
magnetic- induction:

: sinh [T _ 4
A,(x)  By(x) . 2K(k)x A A 24
—_— = = Cn
Jy Jy 4 4)K(k)k cosh AK'(k)[2AK(k) cosh 4/24°

A(x)  B.(x) o 2KR)x nd
J J, 4 42K (k)k sinh AK'(k)/2AK (k) cosh 4/24

(s)

Some numerical calculations of the (reduced) magnetic induction components for
the parameter P; = 4n2 and two extreme values of the sample thickness D are presented
in Figs. 3a, 4a (D = 70, 4" = A/r, = 12) and in Figs. 3b, 4b (D =1, 4 = 3.5). 1t is clearly
seen from Figs. 3, 4 that the values of the magnetic induction components are reduced
in comparison to the pure ferromagnet and the effect is more significant if the parameter
P, = rofA is larger.
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Fig. 3. The (reduced) magnetic induction By(x)/Js as a function of x/4 in domain structure for P; = 4n?
and P, = 0, 0.167, 0.25, 0.5 at D = 70 (Fig. 3a) and D = 1 (Fig. 3b), respectively
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Fig. 4. The (reduced) magnetic induction B,(x)/Js as a function of x/4 in domain structure for P, = 42
and P, = 0, 0.167, 0.25, 0.5 at D = 70 (Fig. 4a) and D = 1 (Fig. 4b), respectively
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Fig. 5. The absolute value of the (reduced) magnetic induction B(x)/Js as a functlfony of x/4 in domain
structure for P; = 4n? and P, = 0.167, 0.25, 0.5 at D = 70 (Fig. 5a) and D = 1 (Fig. 5b), respectively
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Now let us calculate the quantity 4B = B(0)—B,(4/2) by using Eq. (15)

nAJ tanh (4/22) {t A4 AK'(k) }

B = = nh — —tanh (16)
47 kK (k) sin AK'(k)[2AK(k)

44 24K (k)

Expression (16) is negative for k < ko, where k, =~ 0.9848 satisfies the equation
2K'(ky) = K(k,). On the other hand, 4B is positive for k > k,. The examples of both
extreme cases are plotted in Fig. 5b and 5a, respectively. The values of the sample thickness
D, correspond to k.

4. Bloch walls in a ferromagnetic superconductor

According to the well-known definition, the width of the 180° Bloch wall, which is
preferable in a rather thicker sample [24], has the form (see e.g. Fig. 6)

d = n]gp(0)] . (17)
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Fig. 6. The angle o which describes the rotation of the magnetization vector 7 as a function of the position
x in domain structure (4 and & denote respectively domain width and Bloch wall width)

By using Egs. (9) and (11) we get ¢x(0) = r; ' and then the width of the Bloch wall in a pure
ferromagnet [19] is )
Op = TF,. | (18)

If we want to obtain the width of the Bloch wall in the ferromagnetic superconductor it is
necessary to calculate ¢gp(x) in the next step of the iteration procedure of the solutions
to Eqs. (7). By inserting Eqs. (12), (13) and (15) to the right-hand side of Eq. (7a) in the
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vicinity of the domain wall centre we have

., 4 AT _ AK'(k)
x) = @p(x)+(2P;)" ' — tanh — | 7' sinh™' ———=
@se(x) = @p(x)+(2Py) 22 an 2/{[ sin 2K(K)
—2K(k)A™* cosh™! AK (k) x (19)
2AK(k) |
Finally, by using Egs. (11), (17) we obtain 3

Sop = Sp{1+(2P)) " K (k)P} tanh (P,K(k)) [sinh™* (P,K'(k))— P; ' cosh™ " (K'(k)P,)]} .
' (20)

The numerical calculations d¢r/0r as a function of the thickness D are presented in
Figs. 7a, 7b. The general conclusion which can be drawn from Figs. 7 concerns the fact
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Fig. 7. Dependence of the ratio dsp/0p on the (reduced) thickness of the sample D for P; = 47 and
P, = 0.1, 0.2, 0.3 (Fig. 7a) and for P; = 0.04n? and P, = 0.1, 0.2, 0.3 (Fig. 7b); D, corresponds to k = 0
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Fig. 8. Dependence of the ratio dsp/4 on the (reduced) thickness D for P, = 4m? and P, = 0.1, 0.2, 0.3
(Fig. 8a) and for P, = 0.04n> and P, = 0.1, 0.2, 0.3 (Fig. 8b); D, corresponds to k =0
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that the width of the Bloch walls in the ferromagnetic superconductor is larger than in
pure ferromagnet. This effect becomes more significant in a rather thick sample and for
larger P, and P; <4n2. Theratio ds¢/4 presented in Fig. 8a and 8b shows that the quantity
¢ is comparable to A4 when the parameter P, is large. Then, it means that the magnetic
arrangement is some type of helical structure.
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