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The Machlin pair potential model was applied to estimate the interaction energy
of atoms in the Heusler alloys Cus-,MnyAl(0 < x < 1) and Cu,Mn,-3AlL (0 <y < ).
The phase diagrams of these alloys were calculated in the approximation of the interaction
of atoms in two zone co-ordinations and they were compared with the experimental results
of Bouchard and Thomas. The approximation used is discussed in the appendix.

1. Introduction

In the first part of the cycle of our papers [1] the theory of “order-disorder” transi-
tions in the stoichiometrical Heusler alloys B,AC was presented. The Bragg-Williams ap-
proximation was used and the interaction of pairs of atoms in one zone co-ordinations
was taken into considerations. In subsequent papers [2, 3] a similar method was applied
to the generalization of the theory to non-stoichiometrical alloys. The interactions of atoms
in two zones co-ordinations were considered. Two particular cases were discussed:

a) where the number of atoms in an alloy is equal to the number of lattice points in
a crystal, and

b) where the number of atoms is less than the number of lattice points in the crystalline
lattice. This assumption is followed by the presence of “structural vacancies” in a crystal.

In the present paper the estimation of the interaction energies of the pairs of atoms
in the Heusler alloys is presented. The estimated values of the energies were substituted
into formulae (14) from paper [2]. With the aid of those formulae the critical temperatures
of the “order-disorder” transitions in the alloys Cu;_,Mn,Al and Cu,Mn,_,Al, were
found. The applied approximation is analyzed in the appendix.
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2. The temperatures of the “order-disorder” transitions in the alloys B _,A,C and B,4,_,C,

In order to simplify the considerations and to obtain a clear representation of the
phase diagrams of the non-stoichiometrical Heusler alloys B,4,C,, the concentration of
atoms of only one component is introduced as an independent variable. The considered
alloys are of the composition: B;_,4.C and B,4,_,C,.

In agreement with the considerations presented in our previous paper the process
of the ordering of atoms in the Heusler alloys may be schematically represented as

Al i,
another possibility is
Ti*

A2 L2,

where Ty, T», Tt denote the critical temperatures of the “order-disorder™ transitions and
A2, B2, L2, are the symbols for the types of structures appearing in the Heusler alloys.
The above critical temperatures may be calculated with the aid of Eqs (14) from paper [2]
applied to the discussed composition of the alloys. Thus, they are given by the following
formulae:

a) the alloys B;_,4.C

LRl
T 16k

—3Wya(r )]+ X[4Wys(r) — 3Wis(r)] +/ 4%,

A% = {x(3—x) [4W,(r)— 3W,2(r)]+(3—x) [4W,5(ry)
—3W,s(ro) ]+ x[4W,s(r) — 3W13(r2)]}2 —4x(3—x)
x {4[4W, (1) — 3W,5(r2)] [4Was(r) —3Was(r2) 1}
+4x(3 —x) {4[Wy2(r1) + Wos(r)— W, 3(F)]
—3[Wya(r2) + Was(r2) — Wis(r2)1),

Ty {x(3—x) [4W12(r))— 3Wa(r)]+(3—x) [4Wa3(ry)

3
T, = 1ok {(x+S30) (1+S40) [2W3(r2) — Wy (ra) — W,3(r2)]

+(x+530) (3= % —S30— S40)Wy2(r2) +(1 +S40) (3
—%—S30—Sa0)Was(ra) +v/ 4%},

4% = {(x+S30) (1+S40) [2W;3(r2) — W1a(r2) — Was(r2)]
+(x+530) (B—X— S50 — S40)Wi2(r2) +(1+540) (3
—x—850—S40)Wa3(r2)}> —16(1 +S,40) (x+S20) (3
—x—S30—S40) {Waa(r)Was(r2) = [Wia(ra) + Was(r2) = Was(r2) T}



3 _
T = e {% X*Wyo(ra) +5 xWas(r2) +3 xWi5(r2)] ‘*“/A*},

x* X x ’
A* = Z le(r2)+ z W23(r2)+ E W13(r2)

=2x{Wy2(r2)Was(ry) — [ Wia(r2) + Was(rz) — Wy 3("2)]2}-
b) The alloys B,4,_,C,
i
T, = Ec {a _% V) [4W,5(r)— 3Wy4(r2)] +3 y[4W,3(ry)
=3W,a(ra)]+5 v =5 ») [4Wy5(r ) —3W,5(r2)] +/4%] ,
A* = {(1—3 y) [4W 5 (r1) = 3W2(r2)] + 5 y[4Was(ry)
—3W,s(r)] +% v —% y) [4W,5(r)— 3W13(7‘2)]}2
-y(1 "% y) {4[4W12(7‘1)“3W12(72)] [4W,5(r1)

—3Wa3(r) 1} +y(1—% ¥) {4[Wi2(r) + Waps(ry)
— Wya(r)] =3[ Wia2(r2) + Was(ra) — Wya(r2)1},

3
T, = 16k {(2=y+850) (¥ +840) [2Wy3(r2) — Wy (r2) — Wya(72)]

+(2=y+520) (2—S20 = S40)W12(r2) +(y + S40) (2
—S20—S40)Was3(ry)+ \/A_ﬂ:},

A% = {(2—y+520) (¥ +540) [2Wy3(r3) = Wa3(r2) — Wia(r2)]
+(2—y+820) (2—820—S40)Wi2(r2)+(¥+S40) (2

—S20— S4o)W23("2)}2 —16(y+840) (2+S20—y) (2

—820=S840) {Wi2(r))Was(ry) — [Wyia(r2) + Was(r2) — Wia(r)I*}

2 —
T = _3‘ {[(‘y" —1) Wi2(r2)+5 y* Was(r2) +y (1— %) W13(7'2):|+\/A*} >

2

2 2
4* = [(1—% Y)2W12("2)+ %‘ Was(ry)+y (1— %) W13("z)]

—16 (1 - ‘;i) {W12("2)W23(7’2)— [W12(”2)+ Waa(ra)— W13(7'2)]2}-
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In the above formulae W, (r)) = 2Vy(rs) — Vilrs) — Vialrs) and Vy(ry) denotes the interaction
energy of a pair of atoms “i” and “k” separated by the distance r, (the radius of the s-th
zone co-ordinations). S,, and S,, denote the values of the long-range order parameters
S, and S, at the temperature 7).

The estimation of the parameters W;(r,) is necessary for the evaluation of the critical
temperatures of the phase transitions.

3. A model of a pair interaction potential in an intermetallic phase

There are several conditions which must be fulfilled by the interaction potential
Vyu(r) of two atoms in a crystal which is in a stable state. They are:

Vi

1) The interatomic force — must be attractive for great distances between atoms

and must be repulsive for small distances. Thus the function V(r) must have a minimum
at r = ry.
2) When r increases, Vy(r) must decrease faster than r—3.
3) All the elastic constants must be positive.
4) C;,—C;, >0, where C;; and C,, are the elastic constants.
The conditions 1) and 2) follow the following simple considerations. The first is
a condition for the appearance of condensed matter, the second arises from the assumption
about the finite value of the cohesive energy of a crystal. Fulfilment of the remaining condi-
tions assures stability with respect to infinitesimal strains. The analysis of the stability of
a crystal and the derivation of the conditions 3) and 4) had been presented by Born [4].
In further considerations the well-known interatomic potential will be applied
V() = - 24 OB ®
r r

where 4, and B, are the parameters of attraction and repulsion depending on the in-
teracting atoms. Machlin [6] introduced the above potential for the calculations of lattice
parameters of some intermetallic solid solutions and his results were in very good agreement
with the experimental data. Fiirth [7] applied the potential (3) to derive the equation of
state of a solid phase and found the relationship between the values of the exponents m
and n, the value of the energy of sublimation, the isothermal compressibility and the thermal
expansion coefficients, Thus m and # may be evaluated from the measurement of the
macroscopic parameters of the crystal.

When the interaction of pairs of atoms in L zone co-ordinations is taken into considera-
tion, the energy of a crystal of a pure element may be expressed by the following equation:

L

E® = — g Z 2V E(ry, 4

s=1

where Z(r,) denotes the co-ordinations number of the s-th zone co-ordinations.
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Introducing the potential given by Eq. (3) and substituting for rg:

}’s =a:- rOs’ (5)
where a is the lattice parameter, one obtains:
(L) (L)
ED = _ ﬁ [ . i_ S(L,m)_*_ _li__ SLm , (6)
20 4" a

where S&™ and S®" denote the lattice sums given by:

L
SE™ = N 2(r) - rod,

s=1

L

SEP = ¥ 2(r) - ror ©)

s=1

The sums depend only on the type of crystalline lattice. The value E® calculated with the
aid of Eq. (6) is equal to the cohesive energy if the parameter a is substituted by the equllib-
rium value of the laitice parameter obtained by solving the equation

SE®
— =0 8
" ®
The solution of Eq. (8) is

n B(L) S(L.n)

do " = m AD @ ®

Thus the formula for the cohesive energy may be written as follows:

SEM = — o . g, (10)

The above equation may be rewritten as
AD = AP . gm g,

B® =By - af - e, (11)

where

4D _ 2n
[V (L,m) *
N(n—m)- S

@ _ 2m
0 N(n—m)S®m

(11

It is clear now that it is possible to calculate the parameters of the interaction potential
of atoms of a pure component of an alloy with the aid of the measurable values ¢ and a,
and Egs (5), (11).
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The next problem is the evaluation of the energy of the interaction of atoms of different
elements. Machlin [6] had postulated that the constants of attraction and repulsion 4
and B of the interaction of different atoms may be estimated directly with the aid of Egs (11)
substituting the cohesive energy ¢ and the lattice parameter a, with the average values & and
a, expressed by the formulae:

ext+ey

g= 7,

2

Gy = Gox— oy , (12)
2

where &y, &y, dox, doy denote the cohesive energies and lattice parameters of the components
X and Y transformed to the uniform structure — “the reference structure” [6] the type
of which is determined by the type of the structure of the considered intermetallic phase.
Such a transformation may be realized with the aid of Eqs (9), (10). As the lattice sums
SE™ and ST depend only on the type on structure, the following relationships may be
derived

aooy) [St(rlfn)sg;n) ]n_lm (13)
alox) | SEMSEM|

&(oy) _ l:ao(o' 1)]'" S«(Tl;,m) (14)
&(02) ao(02) Sz(rl;’m) ’

where ¢, and o, denote the types of structure. Thus knowing the values of the lattice
parameter and cohesive energy of an alloy of a given structure, one may calculate
the latter parameters of the same substance in another structure — for example in
2 “reference structure”.

Now, we are able to estimate the interaction energies of pairs of atoms of the same
and of different elements.

4. The application of the model to the calculation of the phase diagrams of the Heusler
alloys Cuy_ Mn, Al and Cu,Mn,_ Al

The energy parameters W(r,) appearing in the formulae (1) and (2) were evaluated
by the method described in the previous paragraph. Since the structure of the Heusler
alloys in the completely disordered state is of the type A2, the latter type of structure was
considered as the “reference structure”. In calculating the interaction energies of atoms
of single elements the values of the exponents m and n determined by Fiirth [5] was
applied. For the interaction of the atoms Cu and Al the values m = 4, n = 7 were used
and for the interactions Cu-Mn and Mn-Al the “average” values m = 4, n = 8 determined
by Machlin [6] were used. The lattice parameter was assumed to be constant and independ-
ent of the composition of the alloy. The value of the lattice parameter of the alloy Cu,MnAl
was applied and the calculations were done for ao = 5.962 A, L = 2. Thus the critical
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temperature T as a function of the composition of the alloy was determined. Unfortunately
the temperatures T, were impossible to evaluate since there was no information about

the values of the order parameters S,, and S,,.
The results of our calculations are presented in Tables I and IT and Figs 1 and 2.

TABLE 1

Values of the lattice parameters a,, cohesive energies &* of crystals of pure elements, calculated values
of ao and ¢ in the "reference structure” and calculated values of constants 4 and B of the interaction
potential of similar atoms

Real structure Reference structure
Inter- - o i
acting v i eV A B
atoms type ’ ao[A]l |e I:IO“ e_] type aofA] |e |-1024 -
gat gat |

Cu Al 3.607 —2.119 A2 2.911 —1.871 51.487 526.099

Al Al 4,041 —2.025 A2 3.261 -1.788 77.507 1113.556

Mn A2 | 3.081 —1.743 A2 3.081 —1.743 13.205 | 4817.421

* L. Brever, Electronic Structure and Alloy Chemistry of the Transition Elements, ed. by P. Beck,
Interscience 1963.

TABLE II
Calculated values of @, & and of the constants 4 and B of the interaction potential of atoms of different
elements
Reference structure
Interacting — - - y | 3
atoms — _ vV |
type l ao[A] e I:IO24 e—]
gat |
Cu-Al A2 3.086 —1.830 63.596 774.288
Cu-Mn A2 2.996 —1.807 47.824 1245.524
Mn-Al A2 3.171 -1.766 58.644 1916.909
T T L] I T T
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Fig. 1. The phase diagram of the alloys Cu;—,Mn,Al Dashed lines represent the experimental data of
Bouchard and Thomas
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5. Discussion

In our calculations the simplest formula for the interaction energies of atoms in a crystal
was applied. It should be noticed, that among the various known formulae of interaction
potentials that one, which was applied in this paper is the only one, which allows us to
obtain the simple analytical formulae of the dependence of the configurational energy
of an alloy on the number of zone co-ordinations taken into consideration. The main
point of our paper is to present a very simple model of the ordering processes of atoms in
the cubic, ternary alloys. This was the reason why the Bragg-Williams approximation
was applied. It should be also emphasized that this type of interaction potentials was used
by Machlin [6] with a great success.

In Fig. 1 the calculated phase diagram of the alloys Cu;_,Mn,Al is compared with
the DTA data of Bouchard and Thomas [8]. The difference between the theoretical and
experimental data is less than 15%,. In Fig. 2 the phase diagram of the alloys Cu,Mn,_,Al,
is presented. Unfortunately, hitherto no experimental data on the alloys of such compo-
sition have been published.

It should be noted that the lattice parameter of the Heusler alloys Cu,_,Mn_ Al is
expected to decrease while x decrease (for CuzAla, = 5.83 A, for Cu,MnAla, = 5.962 A).
All the calculations were performed without taking this variation into considerations.
The reason was that there was no available information on it.

However, considering the variation of the lattice constant of some binary alloys
with varying composition [10, 11] one can expect that if such a variation of the lattice
constanst was taken into account in the Heusler alloys Cuz_,Mn,Al and Cu,Mn,_,Al,



175

the difference between the calculated and experimentally obtained dependences of the
critical temperature T,(x) of the alloy would be reduced.

It is interesting to note that the calculated value of the temperature T is negative
for all values of x and y. This indicates that the transition L2, <> A2 is impossible in the
alloys Cuz_,Mn,Al and Cu,Mn,_,Al,. In fact, up to now, there is no information about
such transitions in the Heusler alloys.

The experimental investigations of the ordering processes of atoms in the Heusler
alloys are in progress and the results will be published soon.

We are grateful to Mr. Janusz Wolny for all the numerical calculations and very
fruitful discussions.

APPENDIX

The analysis of the applied approximation

The configurational energy of the completely disordered alloys Cu;_.Mn,Al and
Cu,Mn, - ,Al, was studied as a function of the number of zone co-ordinations in which
the interaction of atoms was taken into consideration. The general formula for the configu-
rational energy of a ternary alloy calculated in the approximation of the interaction of
atoms in L zone co-ordinations may be written as [9]:

L 3
E(L) = “—217 Z kz" Z Zuv(rs)ampkv tk(rs 3 (15)

where Z,,,(r;) denotes the number of the lattice sites of the kind “v”* surrounding the p-th
lattice site at the distance 7, a;, denotes the number of atoms of the element “i”” occupying
the p-th sublattice, p,, denotes the probability that an atom of the element “k™ occupies
any lattice site of the kind “v”. Substituting the potentials V;(r,) given by Eq. (3) one

obtains:
3
E: ag\" " 2 : '
ED = _%. [-—-AS,{‘) (—22) aiupkvs;(tLv’m):I
ikf1 i Ay
3 :
-n
L
- Z [B< >(2) E aiﬂpkvs;evw], (16)
ik/1 4 )
where:

(L) _ 4, GEyym |
Aik) = Agkg[ag )]m Eiks
L L k
B( ) = Bfkg[a(l )] * Eiks

@ _ 2n
*0 " N(n—m) - S&m’
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B =
N(n—m) - S&m

L

L, -
S;(w ™ . Z Z/.w(rs) ) rOsm’
s=1
(L <
Suv’n) = Zl Zuv(rs)ro:o
s=

a{™ denotes the “average” lattice parameter given by Eq. (12) applied to the components
“i” and “k”, a, denotes the lattice parameter of the ternary alloy. One should remember
that the values of the exponents m and n also depend an the kinds of the interacting atoms.
If the expressions for the values a;, and p,, [2] are substituted into Eqs (15), one will obtain
the dependence of the configurational energy ED of the long-range order parameters
and the composition of the alloy.

The quantitative analysis of the applied approximation was realized for the cases of
the alloys discussed in the previous paragraphs. The parameters of composition x and y
varied from 0 to 1 with a step of 0.1. To simplify the calculations complete disorder for
the atoms was assumed. The results are presented in Figs 3-8. The curves of the pair
potential of pure elements calculated for several different values of L are shown in the Figs
3a~c. The values of the configurational energy in three particular cases of the composition
of the alloys are presented in Figs 4a-c as functions of L. It is seen that for L > 10 the
variation of E® is practically negligible and that the value of the configurational energy
calculated with the consideration of the interaction of atoms in two zones co-ordinations
is a very good approximation. Namely, the difference between the value of configurational

Vik
[ev]
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'[e\'lJ -
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c)

Fig. 3. The interaction potential of atoms of pure elements: a) Cu, b) Mn, ¢) Al The curves are specified

by the numbers of zone co-ordinations taken into considerations in the calculations of the interaction

energy. The radii of the zones co-ordinations in the structure of the Heusler alloys are marked on the *r”
axis ‘

energy calculated for two considered zone co-ordinations and the average one obtained
with the consideration of more than 10 zone co-ordinations never exceeds 109, (for CuMn
about 5%, for: Cu,MnAl about 7.5%, for Cuz;Al 8.5%). '
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Fig. 4. The configurational energy of the alloys Cu,MnAl (a), CusAl (b), CuMn (c) as a function of the
number of zones co-ordinations taken into consideration in the calculations
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