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LATITCE DYNAMICS OF SILVER AND GOLD
ON KREBS’S MODEL
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Phonon dispersion relations along the principal symmetry directions of gold and silver
have been calculated for phonons propagating at room temperature. The calculated curves
are compared with the recent experimental findings. Also calculated are the lattice heat
capacities of these metals at absolute zero temperature. Computed (0—T) curves of them
show good agreements with experimental results. The effect of various forms of the dielectric
screening functions on the calculated phonon spectrum of gold and silver has also been
investigated.

1. Introduction

Krebs {1, 2] has propounded a phenomenological model for lattice dynamics of cubic
metals. His model has achieved a profound success in interpreting the experimental phonon
dispersion curves along the principal symmetry directions as well as the heat capacities
of almost all cubic metals (see for example Krebs [1, 2], Shukla [3, 4], Shukla and Dayal
[5-7], Mahesh and Dayal [8, 9] and S. Pal [10]. The success of Krebs’s [1, 2] model for all
the cubic metals was based on two aspects, namely, the application of central interionic
interactions and the use of electron-ion interaction on a screened coulomb interaction
which had preserved the lattice periodicity in the reciprocal space due to the use of umklapp
process following the ingenious idea of Lax [11]. The experimental phonon dispersion
curves of silver and gold have been determined quite recently. This gave us an opportunity
to test the applicability of Krebs’s model as far as the. reproduction of experimental
results were concerned. It was found that original Krebs’s [1, 2] model did not reproduce
the experimental results. We, thus, have considered interionic interactions out to third
peighbours also. One more basic modification in the original model of Krebs [1, 2] was
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made by replacing the dielectric screening function of Lindhardt to all other existing forms.
for such functions. This would give us an opportunity to test the effects of various dielectric:
screening functions in the calculations of the phonon frequencies of silver and gold. The
existence of numerous experimental elastic and thermal data tempted us also to calculate.
and compare with experiments the lattice heat capacities of these two noble metals.

2. Theory

The frequency of vibration of monoatomic cubic solid can be obtained trom the solu-
tion of the 3 x 3 determinental equation of the form

IDaﬁ(q)_szlauﬁ] = 0: (1)

where 7 is the unit matrix of order three and M is the mass of atom. Each element of the
dynamical matrix D,(q) is split up into two parts: the ion-ion interaction part D,4(g) and
the electron-ion interaction part D,4(g). Written mathematically,

D,4(q) = Dij(q)+ Dzg()- )2

By confining the ion-ion interactions up to third neighbours only, we get the explicit.
expression for a typical diagonal and non-diagonal element of the dynamical matrix.

Dy, () = 2“1[2"'Ci(cj+ Ck)] "‘405251'2

a—i

+803[2/3C,;C(2CT —1)—1/6C,C(2C7 —1)—1/6C,C (2CE-1)], 3y
Dy (@) = 20, S:8;+4/303[SiS {2CF — 1) +4C(C;+ C)]. 4y
s

The electron-ion interaction is taken on of Krebs’s [1, 2] model and a typical expres-
sion for the diagonal matrix describing such an interaction is given by

(‘L +h) _(_Qj i hj)GZ(lh) hithZ({‘z)

2573 (q) = %T aslzke azlz s 612/12 (5}
a=j lg+h|*+ o= Jt) n? 2 f(t2)
In the above expressions o; are the force constants for the i-th neighbour.
. ak;
S; = sin (rak;), C; = cos(nak;)), ¢q;= )
27
s \'? 3(sin pu— p c0s 4)
r=c(=t) ke 03B<C<O0814 g =" : (6)
B 1

k(i = 1, 2, 3) are the cartesian components of the wave vector, /;(i = 1, 2, 3) represent
the cartesian components of the reciprocal lattice wave vector, a — the lattice parameter,
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kr — the Fermi wave vector, r, — the radius of the atomic sphere, az — the Bohr radius,.
k. — the Bulk modulus of the electron gas.

The function f(z) is the dielectric screening function. Krebs [1, 2] has used the form.
given by Lindhardt [12]

4—1% 24¢
t =1 1 —, .
=4+ ——in = ™
with
T
ty =— g+h] and t, = —
1 ke q l n 2 aky

We have introduced in the Krebs’s formalism the other existing forms of the dielectric:
screening functions given by

.0
0= (“roswy ®

where
@) = 3 4%1a" + s + 3, ©

where kqp is Thomas—Fermi radius vector. Another form of f(t) comes from the work.
of Geldert and Vosko [14], given by replacing f(g) in Eq. (8) by

2

1 q
=1 , 10).
(@ =3 q2+fk§~ (10)
where
(= i 11
T 1+0.026r° (1)
where
m*
rs* =T (12)
m

m and m* are the mass and effective mass of electron. The Kleinman and Langreth [15]
form of f(¢) is obtained by replacing the f(g) in Eq. (8) by

=242+ L (13)
V=i T i)

where k; is the screening parameter expressible in the Noziéres and Pines [16] interpolation

scheme by
k 2
1-0.0395 (g)
=— F (14)
kTF
1+0.0395 =

F

k2

1.2
F
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Qverhauser [17] has given another form of f(t) which can be obtained by replacing
f(g) in Eq. (8) by the formula given below
1.1x?

I S——— 15
(1+10x%+1.5x%)"/? (15)

fle) =

The f(¢) functions given by Singwi et al. [17] can be obtained by replacing the f(g) in
Eq. (8) by the expression given below

flg) = A(1—e B, (16)

By expanding the secular determinant in the longwavelength limit (¢ — 0), the following
relations are-obtained between the elastic constants and force constants

aCy; = 204 +4oy + 1205+ aKe, 17
aC,, = ay+603+akKe, (18)
aCyy = oy +603. (19)

3. Numerical computations

Before the phonon dispersion relations and lattice heat capacities are calculated,
the evaluation of the free parameters of the model becomes necessary. There are four
disposable parameters in the model. To evaluate them uniquely we have employed four
equations, three between elastic constants and force constants and one between force
constants and frequency from the boundary of Brillouin zone. Several choices were made
for this frequency but finally longitudinal zone boundary from |EEE| directions was selected.
In order to have a direct comparison with the experimental phonon relations, the phonon
frequencies along symmetry directions were calculated by employing the other experi-
mental data at the temperature at which experimental phonons were determined.

The phonon frequencies of silver were determined by Kamitakahara and Brockhouse
[19] and that of gold by Lynn et al. [20] at room temperature only. Thus, elastic constants
and lattice parameter were taken at the room temperature only. The experimental elastic

TABLE 1
Input data to calculate force constants of silver and gold
‘ Flastic constant Latti .
! in 10!t dyn cm™2 attice | Phonon
Substance | Temperature [K] | ' ~ parameter |  frequency
| ' ° | 12
. Ci1 Ciz Caa A | 16 Hz
Silver ‘ 0 l 13.15 9.73 5.11 4.06 YL.s.5.5 = S5.21
\ 296 | 1240 9.34 4.61 4.08 VL.s.s.s = 5.07
Gold 0 20.16 16.97 4.54 4.056 ‘ ?L.1.0.0 = 4.69
296 19.23 | 16.31 4.20 4.070 | ¥L.1.0.0 = 4.61
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TABLE 11
Force constants of silver at room temperature unit 10° dyn cm™

Dielectric screening functior o B y ake
Lindhardt 22.279 ~1.1611 —.578 19.390
Modified Hubbard’s form 22.740 —1.611 —~.666 19.390
Klein and Langreth 22.291 —1.581 —.580 19.298
Vosko et al. 22.326 ~1.611 —.586 19.390
Overhauser 21.177 —1.581 —.395 19.298

TABLE III
Force constants of gold at room temperature unit 10 dyn cm™!

Dielectric screening function o B Y ake
Lindhardt 32.994 —~1.292 —2.649 49.247
Modified Hubbard’s form 33.491 —-1.292 —2.732 49.247
Klein and Langreth 31.931 —1.302 —2.473 49.288
Vosko et al. 33.090 —1.292 ~2.666 49.247
Overhauser 39.900 —1.302 —~2.134 49.288

constants of silver and gold were taken from the measurement of Neighbours and Alers
[21]. The input data to calculate atomic force constants are given in Table I. Output
values of the force constants are presented in Tables II and III.

In figures 1 and 2 are shown the computed phonon dispersion curves of silver and gold
along the principal symmetry directions. In those figures are also plotted the experimental
frequencies for comparison purpose. While the theoretical curves are shown by continuous
lines, experimental points are shown by differemu symbols given in the captions. The

computed curves correspond to the dielectric functions used by Krebs [1, 2].
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‘We have also investigated the effect of introducing the various forms of the dielectric
screening function on phonon frequencies of silver and gold. For that purpose we have
tried all the various forms described in the theory except that of Singwi et al. [18] as we
could not get the values of 4 and B appearing in the work of Singwi for silver and gold.

6. - - ———

[.0.0] ;[_g,.e.O] - [eet]

Fig. 2. Phonon dispersion relations in gold along the principal symmetry directions. Theoretical curves
are shown by continuous lines. Experimental points from the measurements of Lynn et al. are shown by O

Every time new dielectric screening function was employed with the same input
data, we had obtained different sets of force constants. In Tables IT and III are shown
the output values of the force constants by using different dielectric screening functions.
The phonon dispersion relations in silver and gold have been calculated with each set of
force constants. It was observed that for low wave vectors all the sets of the force constants
gave identical frequencies. The maximum deviation between one set of results to other
was found to be about 1% near the high frequency ends. Thus all different sets of dispersion
curves were not plotted. The figures 1 and 2 correspond to the usual Lindhardt’s dielectric
functions.

To calculate the lattice heat capacities of silver and gold, zero degree Kelvin values
of the force constants were evaluated. For that purpose, we took the extrapolated values
of elastic constants of silver and gold. The lattice constants of silver and gold at 0° Kelvin
were extrapolated from the thermal expansion data of Behari and Tripathi [22]. The zero
degree Kelvin values of phonon frequencies were extrapolated on the following scheme
based on the work of Varshni and Yuen [23].

N G (C’Ka(K) T
L8 1(296°K) (C11)296°K a3(296°K)

‘ Vb(oK) __[ (C11+2C12+4C44) K a*(°’K) ]1/2

Vigoo: v (296°K) (C1 1+ 2C;,+ 4C44)296°K a3(296°K)

The inpiit data to calculate atomic force constant at zero degree Kelvin are given in Table I.
The output values of atomic force constants for silver and gold at zero degree Kelvin
temperature using different dielectric screening functions are given in Tables IV and V.
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TABLE IV
Force constants of silver at zero degree Kelvin temperature unit 10°® dyn cm™?!

Dielectric screening function o I g » ake
== - = S S
Lindhardt 20.166 ‘ —-1.715 —.097 18.757
Modified Hubbard’s form 21.126 [ -1.715 —.046 18.757
Klein and Langreth - 22.159 —1.715 —-.023° 18.757
Vosko et al. 20.257 | ~1.715 —.081 . 18.757
Overhauser 21.086 t ~1.715 po0 —.057 18.757

TABLE V
Force constants of gold at zero degree Kelvin temperature unit 10° dyn em™!
e . — | S E— ——— =

Dielectric screening function | o | B v ake

|
Lindhardt 28.659 —-1.370 —1.707 50.416
Modified Hubbard’s form 29.602 ‘ —1.370 | —1.864 50.461
Klein and Langreth 32.052 —-1.370 | —2.273 50.416
Vosko et al. 28.823 ‘ —1.370 —1.735 50.416
Overhauser 29.587 ,' —1.370 —1.862 50.416

1

In order to calculate lattice heat capacities we have divided the first Brillouin zone
into an equally spaced wavevector space in 8000 parts. The lattice pariodicity made it
possible to calculate the frequencies only for 262 non equivalent points including the origin.
The resulting phonon spectra ware utilized to plott g(v) versus' v curve to calculate C, on
Blackman’s Sampling Technique. The resultant C, was utilised to calculate 6.

We have calculated (0 —T') curves of silver and gold by using all five different values
of atomic force constants given in Tables IV and V. The different resultant (8—T)
curves of silver and gold did not differ much from each other. We, thus, have plotted in
figures 3 and 4 the (0—1T') curves of silver and gold using the dielectric screening function
of Lindhardt [12] only. In those figures are also plotted the experimental (6 —T) curves
of silver and gold. The experimental C, of silver and gold have been taken respectively
from the work of Giauque and Meads [24] and that of Frebelle and Giauque [25]. To
estimate the lattice heat capacities of these metals, the electronic specific heat part, y,
was taken to be equal to 0.65 and 0.74 in units of mJ mol~* deg~? respectively for silver
and gold from the measurements of Yates and Hoare [26] and that of Corek et al. [27].

A critical study of figure 1 reveals the fact that the calculated phonoen dispersion curves
of silver along all the three principle symmetry directions have reproduced extremely
well the experimental results. Except at few wave vectors in the high frequency ends for
some of branches of the dispersion curves, the calculated curves have reproduced the experi-
mental ones within the limits of the experimental errors. The maximum deviations found
between the calculated and experimental phonon are found to be of the order of 6%.
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A study of figure 3 reveals the information that the calculated (6—T') curve of silver
has reproduced the entire course of the experimental results and is found to lie about 29
above the experimental curve.
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Fig. 3. (6—T) curves of silver. Continuous line shows the theoretical curve. Experimentalzpoints are
shown by @
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Fig. 4. (0~T) curves of gold. Continuous line shows the theoretical curve. Experimental points are
shown by @

A critical survey of figure 2 indicates that the calculated phonon dispersion curves
of gold have reproduced extremely well the experimental results of Lynn et al. [20] along
all the three principal symmetry directions. At low wave vectors the calculated curves
have reproduced the experimental results. A little deviation exists between the two sets
of results in the transverse branches of |£EE| and [E£Q| directions. But, in every case, the
experimental phonons are found to differ from the theoretical results only by 67%.

A critical study of figure 4 reveals the fact that the calculated (6—T7) curve of gold
has reproduced the entire course for the experimental curve and lies about 29, below it.
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4. Discussion and conclusion

The present study of the lattice dynamlcs and heat capacities of silver and gold on
Krebs’s model have shown that the computed phonon dispersion curves as well -1
curves show an excellent agreement with the experimental results. The maximum departure
between the calculated and experimental frequency is found to be less than 6% and for
the case of 8 less than 29.

- Itis worthwhile to compare present results with the other existing theoretical computa-

tions. Kamitakahara and Brockhouse [19] have employed as many as 12 parameters in
their point ion model study to fit the experimental phonon dispersion relations in silver.
Lynn et al. [20] had to employ as many as 16 parameters to fit their experimental phonon
dispersion curves of gold. Even with using such a huge number of parameters in their
point ion model studies these authors could not fit their experimental phonon dispersion
curves better than those given by the present results. It is just an obvious fact as these
authors have ignored the electron-ion interaction in metals. This is the basic reason why
they could not fit ¢ — O limit results i.e. the experimental elastic constants also.

The earlier study of lattice dynamics of silver and gold by Shukla [4] and Shukla and
Dayal [5] is quite inferior to the present result. The numerical values of the force constants
given by these authors could not explain very well the phonon dispersion relations in these
metals. In the absence of the experimental phonon dispersion relations in gold and silver,
Shukla and Dayal [7] have tried to fit the experimental (6—T) curves of them. In doing
that they drew a false conclusion that electron screening in noble metals varied in between
the limits predicted by the theories of Bohm and Pines and Thomas and Fermi. Where as
we found that electron screening in silver and gold is governed only by the theory of Bohm
and Pines. This result is in confirmation with the recent result of Closs and Shukla [28].
The only change found necessary, in Krebs’s model to interpret experimental phonon
dispersion relations was to include the interionic interactions out to third neighbour.

We also investigated the effect of the introduction of the various forms of the dielectric
screening functions in Krebs’s model as far as the evaluation of phonon frequencies of
silver and gold were concerned. A critical study of Tables IT and III would show that the
atomic force constants of silver and gold varied very little with the use of the different
dielectric screening function. -

The entire phonon spectrum of them did not differ from each other more than 1%
when the individual frequencies were compared from the different dielectric screening
functions. This kind of result is a little bit surprising when compared with the results
on models on first principles (see Price et al. [29]) where the different dielectric scre-
ening functions have got drastic influences on the computed phonon frequencies of
simple metals. Two conclusions could be derived from the present results. Firstly, for
monovalents metal (silver and gold) different dielectric screening functions have got very
little effect in the computation of phonon frequencies. Secondly, the individual effect
of the dielectric function is lost in the evaluation of the phonon frequencies. This is because
the introduction of the bulk modulus of electron gas in Krebs’s model is only on an empir-
ical basis i.e. ¢ — O limit. Probably, a best test of the effect of the dielectric screening
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function would be to employ the model of Krebs and Holtz [30]. A remark about the
evaluation of 0 should be made. The @ represents a statistical parameter of the model
which is obtained by an averaging over the entire phonon spectrum. Thus, how so ever
good a model may be in interpreting the experimental phonon dispersion curves along the
principal symmetry directions, it would never predict extremely well the (0—1T) curve.
These two properties are independent checks of the model. No doubt, a good fit with
experimental phonon dispersion curves ensures a good agreement with the experimental
(8—T) curve but reverse is not true.
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